| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > baselsiga | Structured version Visualization version GIF version | ||
| Description: A sigma-algebra contains its base universe set. (Contributed by Thierry Arnoux, 26-Oct-2016.) |
| Ref | Expression |
|---|---|
| baselsiga | ⊢ (𝑆 ∈ (sigAlgebra‘𝐴) → 𝐴 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3458 | . 2 ⊢ (𝑆 ∈ (sigAlgebra‘𝐴) → 𝑆 ∈ V) | |
| 2 | issiga 34148 | . . . 4 ⊢ (𝑆 ∈ V → (𝑆 ∈ (sigAlgebra‘𝐴) ↔ (𝑆 ⊆ 𝒫 𝐴 ∧ (𝐴 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝐴 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))))) | |
| 3 | 2 | simplbda 499 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝑆 ∈ (sigAlgebra‘𝐴)) → (𝐴 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝐴 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))) |
| 4 | 3 | simp1d 1142 | . 2 ⊢ ((𝑆 ∈ V ∧ 𝑆 ∈ (sigAlgebra‘𝐴)) → 𝐴 ∈ 𝑆) |
| 5 | 1, 4 | mpancom 688 | 1 ⊢ (𝑆 ∈ (sigAlgebra‘𝐴) → 𝐴 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 ∖ cdif 3895 ⊆ wss 3898 𝒫 cpw 4551 ∪ cuni 4860 class class class wbr 5095 ‘cfv 6488 ωcom 7804 ≼ cdom 8875 sigAlgebracsiga 34144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6444 df-fun 6490 df-fv 6496 df-siga 34145 |
| This theorem is referenced by: unielsiga 34164 sigaldsys 34195 cldssbrsiga 34223 1stmbfm 34296 2ndmbfm 34297 unveldomd 34451 probmeasb 34466 dstrvprob 34508 |
| Copyright terms: Public domain | W3C validator |