Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > baselsiga | Structured version Visualization version GIF version |
Description: A sigma-algebra contains its base universe set. (Contributed by Thierry Arnoux, 26-Oct-2016.) |
Ref | Expression |
---|---|
baselsiga | ⊢ (𝑆 ∈ (sigAlgebra‘𝐴) → 𝐴 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3459 | . 2 ⊢ (𝑆 ∈ (sigAlgebra‘𝐴) → 𝑆 ∈ V) | |
2 | issiga 32378 | . . . 4 ⊢ (𝑆 ∈ V → (𝑆 ∈ (sigAlgebra‘𝐴) ↔ (𝑆 ⊆ 𝒫 𝐴 ∧ (𝐴 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝐴 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))))) | |
3 | 2 | simplbda 500 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝑆 ∈ (sigAlgebra‘𝐴)) → (𝐴 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝐴 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))) |
4 | 3 | simp1d 1141 | . 2 ⊢ ((𝑆 ∈ V ∧ 𝑆 ∈ (sigAlgebra‘𝐴)) → 𝐴 ∈ 𝑆) |
5 | 1, 4 | mpancom 685 | 1 ⊢ (𝑆 ∈ (sigAlgebra‘𝐴) → 𝐴 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2105 ∀wral 3061 Vcvv 3441 ∖ cdif 3895 ⊆ wss 3898 𝒫 cpw 4547 ∪ cuni 4852 class class class wbr 5092 ‘cfv 6479 ωcom 7780 ≼ cdom 8802 sigAlgebracsiga 32374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-iota 6431 df-fun 6481 df-fv 6487 df-siga 32375 |
This theorem is referenced by: unielsiga 32394 sigaldsys 32425 cldssbrsiga 32453 1stmbfm 32527 2ndmbfm 32528 unveldomd 32682 probmeasb 32697 dstrvprob 32738 |
Copyright terms: Public domain | W3C validator |