Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baselsiga Structured version   Visualization version   GIF version

Theorem baselsiga 32083
Description: A sigma-algebra contains its base universe set. (Contributed by Thierry Arnoux, 26-Oct-2016.)
Assertion
Ref Expression
baselsiga (𝑆 ∈ (sigAlgebra‘𝐴) → 𝐴𝑆)

Proof of Theorem baselsiga
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3450 . 2 (𝑆 ∈ (sigAlgebra‘𝐴) → 𝑆 ∈ V)
2 issiga 32080 . . . 4 (𝑆 ∈ V → (𝑆 ∈ (sigAlgebra‘𝐴) ↔ (𝑆 ⊆ 𝒫 𝐴 ∧ (𝐴𝑆 ∧ ∀𝑥𝑆 (𝐴𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
32simplbda 500 . . 3 ((𝑆 ∈ V ∧ 𝑆 ∈ (sigAlgebra‘𝐴)) → (𝐴𝑆 ∧ ∀𝑥𝑆 (𝐴𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))
43simp1d 1141 . 2 ((𝑆 ∈ V ∧ 𝑆 ∈ (sigAlgebra‘𝐴)) → 𝐴𝑆)
51, 4mpancom 685 1 (𝑆 ∈ (sigAlgebra‘𝐴) → 𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wcel 2106  wral 3064  Vcvv 3432  cdif 3884  wss 3887  𝒫 cpw 4533   cuni 4839   class class class wbr 5074  cfv 6433  ωcom 7712  cdom 8731  sigAlgebracsiga 32076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-siga 32077
This theorem is referenced by:  unielsiga  32096  sigaldsys  32127  cldssbrsiga  32155  1stmbfm  32227  2ndmbfm  32228  unveldomd  32382  probmeasb  32397  dstrvprob  32438
  Copyright terms: Public domain W3C validator