Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baselsiga Structured version   Visualization version   GIF version

Theorem baselsiga 34105
Description: A sigma-algebra contains its base universe set. (Contributed by Thierry Arnoux, 26-Oct-2016.)
Assertion
Ref Expression
baselsiga (𝑆 ∈ (sigAlgebra‘𝐴) → 𝐴𝑆)

Proof of Theorem baselsiga
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3468 . 2 (𝑆 ∈ (sigAlgebra‘𝐴) → 𝑆 ∈ V)
2 issiga 34102 . . . 4 (𝑆 ∈ V → (𝑆 ∈ (sigAlgebra‘𝐴) ↔ (𝑆 ⊆ 𝒫 𝐴 ∧ (𝐴𝑆 ∧ ∀𝑥𝑆 (𝐴𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
32simplbda 499 . . 3 ((𝑆 ∈ V ∧ 𝑆 ∈ (sigAlgebra‘𝐴)) → (𝐴𝑆 ∧ ∀𝑥𝑆 (𝐴𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))
43simp1d 1142 . 2 ((𝑆 ∈ V ∧ 𝑆 ∈ (sigAlgebra‘𝐴)) → 𝐴𝑆)
51, 4mpancom 688 1 (𝑆 ∈ (sigAlgebra‘𝐴) → 𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  wral 3044  Vcvv 3447  cdif 3911  wss 3914  𝒫 cpw 4563   cuni 4871   class class class wbr 5107  cfv 6511  ωcom 7842  cdom 8916  sigAlgebracsiga 34098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-siga 34099
This theorem is referenced by:  unielsiga  34118  sigaldsys  34149  cldssbrsiga  34177  1stmbfm  34251  2ndmbfm  34252  unveldomd  34406  probmeasb  34421  dstrvprob  34463
  Copyright terms: Public domain W3C validator