| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cldssbrsiga | Structured version Visualization version GIF version | ||
| Description: A Borel Algebra contains all closed sets of its base topology. (Contributed by Thierry Arnoux, 27-Mar-2017.) |
| Ref | Expression |
|---|---|
| cldssbrsiga | ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . . . 7 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | cldss 22949 | . . . . . 6 ⊢ (𝑥 ∈ (Clsd‘𝐽) → 𝑥 ⊆ ∪ 𝐽) |
| 3 | 2 | adantl 481 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → 𝑥 ⊆ ∪ 𝐽) |
| 4 | dfss4 4228 | . . . . 5 ⊢ (𝑥 ⊆ ∪ 𝐽 ↔ (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) = 𝑥) | |
| 5 | 3, 4 | sylib 218 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) = 𝑥) |
| 6 | 1 | topopn 22826 | . . . . . 6 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
| 7 | 1 | difopn 22954 | . . . . . 6 ⊢ ((∪ 𝐽 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ 𝑥) ∈ 𝐽) |
| 8 | 6, 7 | sylan 580 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ 𝑥) ∈ 𝐽) |
| 9 | id 22 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → 𝐽 ∈ Top) | |
| 10 | 9 | sgsiga 34125 | . . . . . . 7 ⊢ (𝐽 ∈ Top → (sigaGen‘𝐽) ∈ ∪ ran sigAlgebra) |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (∪ 𝐽 ∖ 𝑥) ∈ 𝐽) → (sigaGen‘𝐽) ∈ ∪ ran sigAlgebra) |
| 12 | elex 3465 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → 𝐽 ∈ V) | |
| 13 | sigagensiga 34124 | . . . . . . . 8 ⊢ (𝐽 ∈ V → (sigaGen‘𝐽) ∈ (sigAlgebra‘∪ 𝐽)) | |
| 14 | baselsiga 34098 | . . . . . . . 8 ⊢ ((sigaGen‘𝐽) ∈ (sigAlgebra‘∪ 𝐽) → ∪ 𝐽 ∈ (sigaGen‘𝐽)) | |
| 15 | 12, 13, 14 | 3syl 18 | . . . . . . 7 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ (sigaGen‘𝐽)) |
| 16 | 15 | adantr 480 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (∪ 𝐽 ∖ 𝑥) ∈ 𝐽) → ∪ 𝐽 ∈ (sigaGen‘𝐽)) |
| 17 | elsigagen 34130 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (∪ 𝐽 ∖ 𝑥) ∈ 𝐽) → (∪ 𝐽 ∖ 𝑥) ∈ (sigaGen‘𝐽)) | |
| 18 | difelsiga 34116 | . . . . . 6 ⊢ (((sigaGen‘𝐽) ∈ ∪ ran sigAlgebra ∧ ∪ 𝐽 ∈ (sigaGen‘𝐽) ∧ (∪ 𝐽 ∖ 𝑥) ∈ (sigaGen‘𝐽)) → (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) ∈ (sigaGen‘𝐽)) | |
| 19 | 11, 16, 17, 18 | syl3anc 1373 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (∪ 𝐽 ∖ 𝑥) ∈ 𝐽) → (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) ∈ (sigaGen‘𝐽)) |
| 20 | 8, 19 | syldan 591 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) ∈ (sigaGen‘𝐽)) |
| 21 | 5, 20 | eqeltrrd 2829 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → 𝑥 ∈ (sigaGen‘𝐽)) |
| 22 | 21 | ex 412 | . 2 ⊢ (𝐽 ∈ Top → (𝑥 ∈ (Clsd‘𝐽) → 𝑥 ∈ (sigaGen‘𝐽))) |
| 23 | 22 | ssrdv 3949 | 1 ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∖ cdif 3908 ⊆ wss 3911 ∪ cuni 4867 ran crn 5632 ‘cfv 6499 Topctop 22813 Clsdccld 22936 sigAlgebracsiga 34091 sigaGencsigagen 34121 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-ac2 10392 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-oi 9439 df-dju 9830 df-card 9868 df-acn 9871 df-ac 10045 df-top 22814 df-cld 22939 df-siga 34092 df-sigagen 34122 |
| This theorem is referenced by: sxbrsigalem4 34271 sibfinima 34323 sibfof 34324 orvccel 34447 |
| Copyright terms: Public domain | W3C validator |