Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cldssbrsiga Structured version   Visualization version   GIF version

Theorem cldssbrsiga 30856
Description: A Borel Algebra contains all closed sets of its base topology. (Contributed by Thierry Arnoux, 27-Mar-2017.)
Assertion
Ref Expression
cldssbrsiga (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽))

Proof of Theorem cldssbrsiga
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2778 . . . . . . 7 𝐽 = 𝐽
21cldss 21252 . . . . . 6 (𝑥 ∈ (Clsd‘𝐽) → 𝑥 𝐽)
32adantl 475 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → 𝑥 𝐽)
4 dfss4 4085 . . . . 5 (𝑥 𝐽 ↔ ( 𝐽 ∖ ( 𝐽𝑥)) = 𝑥)
53, 4sylib 210 . . . 4 ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → ( 𝐽 ∖ ( 𝐽𝑥)) = 𝑥)
61topopn 21129 . . . . . 6 (𝐽 ∈ Top → 𝐽𝐽)
71difopn 21257 . . . . . 6 (( 𝐽𝐽𝑥 ∈ (Clsd‘𝐽)) → ( 𝐽𝑥) ∈ 𝐽)
86, 7sylan 575 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → ( 𝐽𝑥) ∈ 𝐽)
9 id 22 . . . . . . . 8 (𝐽 ∈ Top → 𝐽 ∈ Top)
109sgsiga 30811 . . . . . . 7 (𝐽 ∈ Top → (sigaGen‘𝐽) ∈ ran sigAlgebra)
1110adantr 474 . . . . . 6 ((𝐽 ∈ Top ∧ ( 𝐽𝑥) ∈ 𝐽) → (sigaGen‘𝐽) ∈ ran sigAlgebra)
12 elex 3414 . . . . . . . 8 (𝐽 ∈ Top → 𝐽 ∈ V)
13 sigagensiga 30810 . . . . . . . 8 (𝐽 ∈ V → (sigaGen‘𝐽) ∈ (sigAlgebra‘ 𝐽))
14 baselsiga 30784 . . . . . . . 8 ((sigaGen‘𝐽) ∈ (sigAlgebra‘ 𝐽) → 𝐽 ∈ (sigaGen‘𝐽))
1512, 13, 143syl 18 . . . . . . 7 (𝐽 ∈ Top → 𝐽 ∈ (sigaGen‘𝐽))
1615adantr 474 . . . . . 6 ((𝐽 ∈ Top ∧ ( 𝐽𝑥) ∈ 𝐽) → 𝐽 ∈ (sigaGen‘𝐽))
17 elsigagen 30816 . . . . . 6 ((𝐽 ∈ Top ∧ ( 𝐽𝑥) ∈ 𝐽) → ( 𝐽𝑥) ∈ (sigaGen‘𝐽))
18 difelsiga 30802 . . . . . 6 (((sigaGen‘𝐽) ∈ ran sigAlgebra ∧ 𝐽 ∈ (sigaGen‘𝐽) ∧ ( 𝐽𝑥) ∈ (sigaGen‘𝐽)) → ( 𝐽 ∖ ( 𝐽𝑥)) ∈ (sigaGen‘𝐽))
1911, 16, 17, 18syl3anc 1439 . . . . 5 ((𝐽 ∈ Top ∧ ( 𝐽𝑥) ∈ 𝐽) → ( 𝐽 ∖ ( 𝐽𝑥)) ∈ (sigaGen‘𝐽))
208, 19syldan 585 . . . 4 ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → ( 𝐽 ∖ ( 𝐽𝑥)) ∈ (sigaGen‘𝐽))
215, 20eqeltrrd 2860 . . 3 ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → 𝑥 ∈ (sigaGen‘𝐽))
2221ex 403 . 2 (𝐽 ∈ Top → (𝑥 ∈ (Clsd‘𝐽) → 𝑥 ∈ (sigaGen‘𝐽)))
2322ssrdv 3827 1 (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  Vcvv 3398  cdif 3789  wss 3792   cuni 4673  ran crn 5358  cfv 6137  Topctop 21116  Clsdccld 21239  sigAlgebracsiga 30776  sigaGencsigagen 30807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-inf2 8837  ax-ac2 9622
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-iin 4758  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-se 5317  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isom 6146  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-2o 7846  df-oadd 7849  df-er 8028  df-map 8144  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-oi 8706  df-card 9100  df-acn 9103  df-ac 9274  df-cda 9327  df-top 21117  df-cld 21242  df-siga 30777  df-sigagen 30808
This theorem is referenced by:  sxbrsigalem4  30955  sibfinima  31007  sibfof  31008  orvccel  31131
  Copyright terms: Public domain W3C validator