Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cldssbrsiga Structured version   Visualization version   GIF version

Theorem cldssbrsiga 32155
Description: A Borel Algebra contains all closed sets of its base topology. (Contributed by Thierry Arnoux, 27-Mar-2017.)
Assertion
Ref Expression
cldssbrsiga (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽))

Proof of Theorem cldssbrsiga
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . . . 7 𝐽 = 𝐽
21cldss 22180 . . . . . 6 (𝑥 ∈ (Clsd‘𝐽) → 𝑥 𝐽)
32adantl 482 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → 𝑥 𝐽)
4 dfss4 4192 . . . . 5 (𝑥 𝐽 ↔ ( 𝐽 ∖ ( 𝐽𝑥)) = 𝑥)
53, 4sylib 217 . . . 4 ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → ( 𝐽 ∖ ( 𝐽𝑥)) = 𝑥)
61topopn 22055 . . . . . 6 (𝐽 ∈ Top → 𝐽𝐽)
71difopn 22185 . . . . . 6 (( 𝐽𝐽𝑥 ∈ (Clsd‘𝐽)) → ( 𝐽𝑥) ∈ 𝐽)
86, 7sylan 580 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → ( 𝐽𝑥) ∈ 𝐽)
9 id 22 . . . . . . . 8 (𝐽 ∈ Top → 𝐽 ∈ Top)
109sgsiga 32110 . . . . . . 7 (𝐽 ∈ Top → (sigaGen‘𝐽) ∈ ran sigAlgebra)
1110adantr 481 . . . . . 6 ((𝐽 ∈ Top ∧ ( 𝐽𝑥) ∈ 𝐽) → (sigaGen‘𝐽) ∈ ran sigAlgebra)
12 elex 3450 . . . . . . . 8 (𝐽 ∈ Top → 𝐽 ∈ V)
13 sigagensiga 32109 . . . . . . . 8 (𝐽 ∈ V → (sigaGen‘𝐽) ∈ (sigAlgebra‘ 𝐽))
14 baselsiga 32083 . . . . . . . 8 ((sigaGen‘𝐽) ∈ (sigAlgebra‘ 𝐽) → 𝐽 ∈ (sigaGen‘𝐽))
1512, 13, 143syl 18 . . . . . . 7 (𝐽 ∈ Top → 𝐽 ∈ (sigaGen‘𝐽))
1615adantr 481 . . . . . 6 ((𝐽 ∈ Top ∧ ( 𝐽𝑥) ∈ 𝐽) → 𝐽 ∈ (sigaGen‘𝐽))
17 elsigagen 32115 . . . . . 6 ((𝐽 ∈ Top ∧ ( 𝐽𝑥) ∈ 𝐽) → ( 𝐽𝑥) ∈ (sigaGen‘𝐽))
18 difelsiga 32101 . . . . . 6 (((sigaGen‘𝐽) ∈ ran sigAlgebra ∧ 𝐽 ∈ (sigaGen‘𝐽) ∧ ( 𝐽𝑥) ∈ (sigaGen‘𝐽)) → ( 𝐽 ∖ ( 𝐽𝑥)) ∈ (sigaGen‘𝐽))
1911, 16, 17, 18syl3anc 1370 . . . . 5 ((𝐽 ∈ Top ∧ ( 𝐽𝑥) ∈ 𝐽) → ( 𝐽 ∖ ( 𝐽𝑥)) ∈ (sigaGen‘𝐽))
208, 19syldan 591 . . . 4 ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → ( 𝐽 ∖ ( 𝐽𝑥)) ∈ (sigaGen‘𝐽))
215, 20eqeltrrd 2840 . . 3 ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → 𝑥 ∈ (sigaGen‘𝐽))
2221ex 413 . 2 (𝐽 ∈ Top → (𝑥 ∈ (Clsd‘𝐽) → 𝑥 ∈ (sigaGen‘𝐽)))
2322ssrdv 3927 1 (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cdif 3884  wss 3887   cuni 4839  ran crn 5590  cfv 6433  Topctop 22042  Clsdccld 22167  sigAlgebracsiga 32076  sigaGencsigagen 32106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-ac2 10219
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-ac 9872  df-top 22043  df-cld 22170  df-siga 32077  df-sigagen 32107
This theorem is referenced by:  sxbrsigalem4  32254  sibfinima  32306  sibfof  32307  orvccel  32429
  Copyright terms: Public domain W3C validator