| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cldssbrsiga | Structured version Visualization version GIF version | ||
| Description: A Borel Algebra contains all closed sets of its base topology. (Contributed by Thierry Arnoux, 27-Mar-2017.) |
| Ref | Expression |
|---|---|
| cldssbrsiga | ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . . . . 7 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | cldss 22972 | . . . . . 6 ⊢ (𝑥 ∈ (Clsd‘𝐽) → 𝑥 ⊆ ∪ 𝐽) |
| 3 | 2 | adantl 481 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → 𝑥 ⊆ ∪ 𝐽) |
| 4 | dfss4 4249 | . . . . 5 ⊢ (𝑥 ⊆ ∪ 𝐽 ↔ (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) = 𝑥) | |
| 5 | 3, 4 | sylib 218 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) = 𝑥) |
| 6 | 1 | topopn 22849 | . . . . . 6 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
| 7 | 1 | difopn 22977 | . . . . . 6 ⊢ ((∪ 𝐽 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ 𝑥) ∈ 𝐽) |
| 8 | 6, 7 | sylan 580 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ 𝑥) ∈ 𝐽) |
| 9 | id 22 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → 𝐽 ∈ Top) | |
| 10 | 9 | sgsiga 34178 | . . . . . . 7 ⊢ (𝐽 ∈ Top → (sigaGen‘𝐽) ∈ ∪ ran sigAlgebra) |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (∪ 𝐽 ∖ 𝑥) ∈ 𝐽) → (sigaGen‘𝐽) ∈ ∪ ran sigAlgebra) |
| 12 | elex 3485 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → 𝐽 ∈ V) | |
| 13 | sigagensiga 34177 | . . . . . . . 8 ⊢ (𝐽 ∈ V → (sigaGen‘𝐽) ∈ (sigAlgebra‘∪ 𝐽)) | |
| 14 | baselsiga 34151 | . . . . . . . 8 ⊢ ((sigaGen‘𝐽) ∈ (sigAlgebra‘∪ 𝐽) → ∪ 𝐽 ∈ (sigaGen‘𝐽)) | |
| 15 | 12, 13, 14 | 3syl 18 | . . . . . . 7 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ (sigaGen‘𝐽)) |
| 16 | 15 | adantr 480 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (∪ 𝐽 ∖ 𝑥) ∈ 𝐽) → ∪ 𝐽 ∈ (sigaGen‘𝐽)) |
| 17 | elsigagen 34183 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (∪ 𝐽 ∖ 𝑥) ∈ 𝐽) → (∪ 𝐽 ∖ 𝑥) ∈ (sigaGen‘𝐽)) | |
| 18 | difelsiga 34169 | . . . . . 6 ⊢ (((sigaGen‘𝐽) ∈ ∪ ran sigAlgebra ∧ ∪ 𝐽 ∈ (sigaGen‘𝐽) ∧ (∪ 𝐽 ∖ 𝑥) ∈ (sigaGen‘𝐽)) → (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) ∈ (sigaGen‘𝐽)) | |
| 19 | 11, 16, 17, 18 | syl3anc 1373 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (∪ 𝐽 ∖ 𝑥) ∈ 𝐽) → (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) ∈ (sigaGen‘𝐽)) |
| 20 | 8, 19 | syldan 591 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) ∈ (sigaGen‘𝐽)) |
| 21 | 5, 20 | eqeltrrd 2836 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → 𝑥 ∈ (sigaGen‘𝐽)) |
| 22 | 21 | ex 412 | . 2 ⊢ (𝐽 ∈ Top → (𝑥 ∈ (Clsd‘𝐽) → 𝑥 ∈ (sigaGen‘𝐽))) |
| 23 | 22 | ssrdv 3969 | 1 ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∖ cdif 3928 ⊆ wss 3931 ∪ cuni 4888 ran crn 5660 ‘cfv 6536 Topctop 22836 Clsdccld 22959 sigAlgebracsiga 34144 sigaGencsigagen 34174 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-ac2 10482 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-oi 9529 df-dju 9920 df-card 9958 df-acn 9961 df-ac 10135 df-top 22837 df-cld 22962 df-siga 34145 df-sigagen 34175 |
| This theorem is referenced by: sxbrsigalem4 34324 sibfinima 34376 sibfof 34377 orvccel 34500 |
| Copyright terms: Public domain | W3C validator |