![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cldssbrsiga | Structured version Visualization version GIF version |
Description: A Borel Algebra contains all closed sets of its base topology. (Contributed by Thierry Arnoux, 27-Mar-2017.) |
Ref | Expression |
---|---|
cldssbrsiga | ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2778 | . . . . . . 7 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | cldss 21252 | . . . . . 6 ⊢ (𝑥 ∈ (Clsd‘𝐽) → 𝑥 ⊆ ∪ 𝐽) |
3 | 2 | adantl 475 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → 𝑥 ⊆ ∪ 𝐽) |
4 | dfss4 4085 | . . . . 5 ⊢ (𝑥 ⊆ ∪ 𝐽 ↔ (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) = 𝑥) | |
5 | 3, 4 | sylib 210 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) = 𝑥) |
6 | 1 | topopn 21129 | . . . . . 6 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
7 | 1 | difopn 21257 | . . . . . 6 ⊢ ((∪ 𝐽 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ 𝑥) ∈ 𝐽) |
8 | 6, 7 | sylan 575 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ 𝑥) ∈ 𝐽) |
9 | id 22 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → 𝐽 ∈ Top) | |
10 | 9 | sgsiga 30811 | . . . . . . 7 ⊢ (𝐽 ∈ Top → (sigaGen‘𝐽) ∈ ∪ ran sigAlgebra) |
11 | 10 | adantr 474 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (∪ 𝐽 ∖ 𝑥) ∈ 𝐽) → (sigaGen‘𝐽) ∈ ∪ ran sigAlgebra) |
12 | elex 3414 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → 𝐽 ∈ V) | |
13 | sigagensiga 30810 | . . . . . . . 8 ⊢ (𝐽 ∈ V → (sigaGen‘𝐽) ∈ (sigAlgebra‘∪ 𝐽)) | |
14 | baselsiga 30784 | . . . . . . . 8 ⊢ ((sigaGen‘𝐽) ∈ (sigAlgebra‘∪ 𝐽) → ∪ 𝐽 ∈ (sigaGen‘𝐽)) | |
15 | 12, 13, 14 | 3syl 18 | . . . . . . 7 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ (sigaGen‘𝐽)) |
16 | 15 | adantr 474 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (∪ 𝐽 ∖ 𝑥) ∈ 𝐽) → ∪ 𝐽 ∈ (sigaGen‘𝐽)) |
17 | elsigagen 30816 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (∪ 𝐽 ∖ 𝑥) ∈ 𝐽) → (∪ 𝐽 ∖ 𝑥) ∈ (sigaGen‘𝐽)) | |
18 | difelsiga 30802 | . . . . . 6 ⊢ (((sigaGen‘𝐽) ∈ ∪ ran sigAlgebra ∧ ∪ 𝐽 ∈ (sigaGen‘𝐽) ∧ (∪ 𝐽 ∖ 𝑥) ∈ (sigaGen‘𝐽)) → (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) ∈ (sigaGen‘𝐽)) | |
19 | 11, 16, 17, 18 | syl3anc 1439 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (∪ 𝐽 ∖ 𝑥) ∈ 𝐽) → (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) ∈ (sigaGen‘𝐽)) |
20 | 8, 19 | syldan 585 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) ∈ (sigaGen‘𝐽)) |
21 | 5, 20 | eqeltrrd 2860 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → 𝑥 ∈ (sigaGen‘𝐽)) |
22 | 21 | ex 403 | . 2 ⊢ (𝐽 ∈ Top → (𝑥 ∈ (Clsd‘𝐽) → 𝑥 ∈ (sigaGen‘𝐽))) |
23 | 22 | ssrdv 3827 | 1 ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 Vcvv 3398 ∖ cdif 3789 ⊆ wss 3792 ∪ cuni 4673 ran crn 5358 ‘cfv 6137 Topctop 21116 Clsdccld 21239 sigAlgebracsiga 30776 sigaGencsigagen 30807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-inf2 8837 ax-ac2 9622 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-iin 4758 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-se 5317 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-isom 6146 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-2o 7846 df-oadd 7849 df-er 8028 df-map 8144 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-oi 8706 df-card 9100 df-acn 9103 df-ac 9274 df-cda 9327 df-top 21117 df-cld 21242 df-siga 30777 df-sigagen 30808 |
This theorem is referenced by: sxbrsigalem4 30955 sibfinima 31007 sibfof 31008 orvccel 31131 |
Copyright terms: Public domain | W3C validator |