| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cldssbrsiga | Structured version Visualization version GIF version | ||
| Description: A Borel Algebra contains all closed sets of its base topology. (Contributed by Thierry Arnoux, 27-Mar-2017.) |
| Ref | Expression |
|---|---|
| cldssbrsiga | ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . . . 7 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | cldss 22916 | . . . . . 6 ⊢ (𝑥 ∈ (Clsd‘𝐽) → 𝑥 ⊆ ∪ 𝐽) |
| 3 | 2 | adantl 481 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → 𝑥 ⊆ ∪ 𝐽) |
| 4 | dfss4 4232 | . . . . 5 ⊢ (𝑥 ⊆ ∪ 𝐽 ↔ (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) = 𝑥) | |
| 5 | 3, 4 | sylib 218 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) = 𝑥) |
| 6 | 1 | topopn 22793 | . . . . . 6 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
| 7 | 1 | difopn 22921 | . . . . . 6 ⊢ ((∪ 𝐽 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ 𝑥) ∈ 𝐽) |
| 8 | 6, 7 | sylan 580 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ 𝑥) ∈ 𝐽) |
| 9 | id 22 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → 𝐽 ∈ Top) | |
| 10 | 9 | sgsiga 34132 | . . . . . . 7 ⊢ (𝐽 ∈ Top → (sigaGen‘𝐽) ∈ ∪ ran sigAlgebra) |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (∪ 𝐽 ∖ 𝑥) ∈ 𝐽) → (sigaGen‘𝐽) ∈ ∪ ran sigAlgebra) |
| 12 | elex 3468 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → 𝐽 ∈ V) | |
| 13 | sigagensiga 34131 | . . . . . . . 8 ⊢ (𝐽 ∈ V → (sigaGen‘𝐽) ∈ (sigAlgebra‘∪ 𝐽)) | |
| 14 | baselsiga 34105 | . . . . . . . 8 ⊢ ((sigaGen‘𝐽) ∈ (sigAlgebra‘∪ 𝐽) → ∪ 𝐽 ∈ (sigaGen‘𝐽)) | |
| 15 | 12, 13, 14 | 3syl 18 | . . . . . . 7 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ (sigaGen‘𝐽)) |
| 16 | 15 | adantr 480 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (∪ 𝐽 ∖ 𝑥) ∈ 𝐽) → ∪ 𝐽 ∈ (sigaGen‘𝐽)) |
| 17 | elsigagen 34137 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (∪ 𝐽 ∖ 𝑥) ∈ 𝐽) → (∪ 𝐽 ∖ 𝑥) ∈ (sigaGen‘𝐽)) | |
| 18 | difelsiga 34123 | . . . . . 6 ⊢ (((sigaGen‘𝐽) ∈ ∪ ran sigAlgebra ∧ ∪ 𝐽 ∈ (sigaGen‘𝐽) ∧ (∪ 𝐽 ∖ 𝑥) ∈ (sigaGen‘𝐽)) → (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) ∈ (sigaGen‘𝐽)) | |
| 19 | 11, 16, 17, 18 | syl3anc 1373 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (∪ 𝐽 ∖ 𝑥) ∈ 𝐽) → (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) ∈ (sigaGen‘𝐽)) |
| 20 | 8, 19 | syldan 591 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) ∈ (sigaGen‘𝐽)) |
| 21 | 5, 20 | eqeltrrd 2829 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → 𝑥 ∈ (sigaGen‘𝐽)) |
| 22 | 21 | ex 412 | . 2 ⊢ (𝐽 ∈ Top → (𝑥 ∈ (Clsd‘𝐽) → 𝑥 ∈ (sigaGen‘𝐽))) |
| 23 | 22 | ssrdv 3952 | 1 ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∖ cdif 3911 ⊆ wss 3914 ∪ cuni 4871 ran crn 5639 ‘cfv 6511 Topctop 22780 Clsdccld 22903 sigAlgebracsiga 34098 sigaGencsigagen 34128 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-ac2 10416 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-oi 9463 df-dju 9854 df-card 9892 df-acn 9895 df-ac 10069 df-top 22781 df-cld 22906 df-siga 34099 df-sigagen 34129 |
| This theorem is referenced by: sxbrsigalem4 34278 sibfinima 34330 sibfof 34331 orvccel 34454 |
| Copyright terms: Public domain | W3C validator |