Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cldssbrsiga | Structured version Visualization version GIF version |
Description: A Borel Algebra contains all closed sets of its base topology. (Contributed by Thierry Arnoux, 27-Mar-2017.) |
Ref | Expression |
---|---|
cldssbrsiga | ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . . . . . 7 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | cldss 22161 | . . . . . 6 ⊢ (𝑥 ∈ (Clsd‘𝐽) → 𝑥 ⊆ ∪ 𝐽) |
3 | 2 | adantl 481 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → 𝑥 ⊆ ∪ 𝐽) |
4 | dfss4 4197 | . . . . 5 ⊢ (𝑥 ⊆ ∪ 𝐽 ↔ (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) = 𝑥) | |
5 | 3, 4 | sylib 217 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) = 𝑥) |
6 | 1 | topopn 22036 | . . . . . 6 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
7 | 1 | difopn 22166 | . . . . . 6 ⊢ ((∪ 𝐽 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ 𝑥) ∈ 𝐽) |
8 | 6, 7 | sylan 579 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ 𝑥) ∈ 𝐽) |
9 | id 22 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → 𝐽 ∈ Top) | |
10 | 9 | sgsiga 32089 | . . . . . . 7 ⊢ (𝐽 ∈ Top → (sigaGen‘𝐽) ∈ ∪ ran sigAlgebra) |
11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (∪ 𝐽 ∖ 𝑥) ∈ 𝐽) → (sigaGen‘𝐽) ∈ ∪ ran sigAlgebra) |
12 | elex 3448 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → 𝐽 ∈ V) | |
13 | sigagensiga 32088 | . . . . . . . 8 ⊢ (𝐽 ∈ V → (sigaGen‘𝐽) ∈ (sigAlgebra‘∪ 𝐽)) | |
14 | baselsiga 32062 | . . . . . . . 8 ⊢ ((sigaGen‘𝐽) ∈ (sigAlgebra‘∪ 𝐽) → ∪ 𝐽 ∈ (sigaGen‘𝐽)) | |
15 | 12, 13, 14 | 3syl 18 | . . . . . . 7 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ (sigaGen‘𝐽)) |
16 | 15 | adantr 480 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (∪ 𝐽 ∖ 𝑥) ∈ 𝐽) → ∪ 𝐽 ∈ (sigaGen‘𝐽)) |
17 | elsigagen 32094 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (∪ 𝐽 ∖ 𝑥) ∈ 𝐽) → (∪ 𝐽 ∖ 𝑥) ∈ (sigaGen‘𝐽)) | |
18 | difelsiga 32080 | . . . . . 6 ⊢ (((sigaGen‘𝐽) ∈ ∪ ran sigAlgebra ∧ ∪ 𝐽 ∈ (sigaGen‘𝐽) ∧ (∪ 𝐽 ∖ 𝑥) ∈ (sigaGen‘𝐽)) → (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) ∈ (sigaGen‘𝐽)) | |
19 | 11, 16, 17, 18 | syl3anc 1369 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (∪ 𝐽 ∖ 𝑥) ∈ 𝐽) → (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) ∈ (sigaGen‘𝐽)) |
20 | 8, 19 | syldan 590 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) ∈ (sigaGen‘𝐽)) |
21 | 5, 20 | eqeltrrd 2841 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → 𝑥 ∈ (sigaGen‘𝐽)) |
22 | 21 | ex 412 | . 2 ⊢ (𝐽 ∈ Top → (𝑥 ∈ (Clsd‘𝐽) → 𝑥 ∈ (sigaGen‘𝐽))) |
23 | 22 | ssrdv 3931 | 1 ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ∖ cdif 3888 ⊆ wss 3891 ∪ cuni 4844 ran crn 5589 ‘cfv 6430 Topctop 22023 Clsdccld 22148 sigAlgebracsiga 32055 sigaGencsigagen 32085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-inf2 9360 ax-ac2 10203 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-iin 4932 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-2o 8282 df-er 8472 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-oi 9230 df-dju 9643 df-card 9681 df-acn 9684 df-ac 9856 df-top 22024 df-cld 22151 df-siga 32056 df-sigagen 32086 |
This theorem is referenced by: sxbrsigalem4 32233 sibfinima 32285 sibfof 32286 orvccel 32408 |
Copyright terms: Public domain | W3C validator |