Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unielsiga Structured version   Visualization version   GIF version

Theorem unielsiga 30725
Description: A sigma-algebra contains its universe set. (Contributed by Thierry Arnoux, 13-Feb-2017.) (Shortened by Thierry Arnoux, 6-Jun-2017.)
Assertion
Ref Expression
unielsiga (𝑆 ran sigAlgebra → 𝑆𝑆)

Proof of Theorem unielsiga
StepHypRef Expression
1 sgon 30721 . 2 (𝑆 ran sigAlgebra → 𝑆 ∈ (sigAlgebra‘ 𝑆))
2 baselsiga 30712 . 2 (𝑆 ∈ (sigAlgebra‘ 𝑆) → 𝑆𝑆)
31, 2syl 17 1 (𝑆 ran sigAlgebra → 𝑆𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2164   cuni 4658  ran crn 5343  cfv 6123  sigAlgebracsiga 30704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-fv 6131  df-siga 30705
This theorem is referenced by:  mbfmcst  30855  1stmbfm  30856  2ndmbfm  30857  imambfm  30858  mbfmco  30860  br2base  30865  prob01  31010  probfinmeasb  31026
  Copyright terms: Public domain W3C validator