|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unveldomd | Structured version Visualization version GIF version | ||
| Description: The universe is an element of the domain of the probability, the universe (entire probability space) being ∪ dom 𝑃 in our construction. (Contributed by Thierry Arnoux, 22-Jan-2017.) | 
| Ref | Expression | 
|---|---|
| unveldomd.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) | 
| Ref | Expression | 
|---|---|
| unveldomd | ⊢ (𝜑 → ∪ dom 𝑃 ∈ dom 𝑃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | unveldomd.1 | . 2 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
| 2 | domprobsiga 34413 | . 2 ⊢ (𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra) | |
| 3 | sgon 34125 | . 2 ⊢ (dom 𝑃 ∈ ∪ ran sigAlgebra → dom 𝑃 ∈ (sigAlgebra‘∪ dom 𝑃)) | |
| 4 | baselsiga 34116 | . 2 ⊢ (dom 𝑃 ∈ (sigAlgebra‘∪ dom 𝑃) → ∪ dom 𝑃 ∈ dom 𝑃) | |
| 5 | 1, 2, 3, 4 | 4syl 19 | 1 ⊢ (𝜑 → ∪ dom 𝑃 ∈ dom 𝑃) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∈ wcel 2108 ∪ cuni 4907 dom cdm 5685 ran crn 5686 ‘cfv 6561 sigAlgebracsiga 34109 Probcprb 34409 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-ov 7434 df-esum 34029 df-siga 34110 df-meas 34197 df-prob 34410 | 
| This theorem is referenced by: unveldom 34418 probdsb 34424 probtotrnd 34427 cndprobtot 34438 0rrv 34453 rrvadd 34454 dstfrvclim1 34480 | 
| Copyright terms: Public domain | W3C validator |