| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unveldomd | Structured version Visualization version GIF version | ||
| Description: The universe is an element of the domain of the probability, the universe (entire probability space) being ∪ dom 𝑃 in our construction. (Contributed by Thierry Arnoux, 22-Jan-2017.) |
| Ref | Expression |
|---|---|
| unveldomd.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
| Ref | Expression |
|---|---|
| unveldomd | ⊢ (𝜑 → ∪ dom 𝑃 ∈ dom 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unveldomd.1 | . 2 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
| 2 | domprobsiga 34496 | . 2 ⊢ (𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra) | |
| 3 | sgon 34209 | . 2 ⊢ (dom 𝑃 ∈ ∪ ran sigAlgebra → dom 𝑃 ∈ (sigAlgebra‘∪ dom 𝑃)) | |
| 4 | baselsiga 34200 | . 2 ⊢ (dom 𝑃 ∈ (sigAlgebra‘∪ dom 𝑃) → ∪ dom 𝑃 ∈ dom 𝑃) | |
| 5 | 1, 2, 3, 4 | 4syl 19 | 1 ⊢ (𝜑 → ∪ dom 𝑃 ∈ dom 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ∪ cuni 4860 dom cdm 5621 ran crn 5622 ‘cfv 6489 sigAlgebracsiga 34193 Probcprb 34492 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 df-ov 7358 df-esum 34113 df-siga 34194 df-meas 34281 df-prob 34493 |
| This theorem is referenced by: unveldom 34501 probdsb 34507 probtotrnd 34510 cndprobtot 34521 0rrv 34536 rrvadd 34537 dstfrvclim1 34563 |
| Copyright terms: Public domain | W3C validator |