Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unveldomd Structured version   Visualization version   GIF version

Theorem unveldomd 34413
Description: The universe is an element of the domain of the probability, the universe (entire probability space) being dom 𝑃 in our construction. (Contributed by Thierry Arnoux, 22-Jan-2017.)
Hypothesis
Ref Expression
unveldomd.1 (𝜑𝑃 ∈ Prob)
Assertion
Ref Expression
unveldomd (𝜑 dom 𝑃 ∈ dom 𝑃)

Proof of Theorem unveldomd
StepHypRef Expression
1 unveldomd.1 . 2 (𝜑𝑃 ∈ Prob)
2 domprobsiga 34409 . 2 (𝑃 ∈ Prob → dom 𝑃 ran sigAlgebra)
3 sgon 34121 . 2 (dom 𝑃 ran sigAlgebra → dom 𝑃 ∈ (sigAlgebra‘ dom 𝑃))
4 baselsiga 34112 . 2 (dom 𝑃 ∈ (sigAlgebra‘ dom 𝑃) → dom 𝑃 ∈ dom 𝑃)
51, 2, 3, 44syl 19 1 (𝜑 dom 𝑃 ∈ dom 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   cuni 4874  dom cdm 5641  ran crn 5642  cfv 6514  sigAlgebracsiga 34105  Probcprb 34405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-esum 34025  df-siga 34106  df-meas 34193  df-prob 34406
This theorem is referenced by:  unveldom  34414  probdsb  34420  probtotrnd  34423  cndprobtot  34434  0rrv  34449  rrvadd  34450  dstfrvclim1  34476
  Copyright terms: Public domain W3C validator