Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unveldomd Structured version   Visualization version   GIF version

Theorem unveldomd 33409
Description: The universe is an element of the domain of the probability, the universe (entire probability space) being βˆͺ dom 𝑃 in our construction. (Contributed by Thierry Arnoux, 22-Jan-2017.)
Hypothesis
Ref Expression
unveldomd.1 (πœ‘ β†’ 𝑃 ∈ Prob)
Assertion
Ref Expression
unveldomd (πœ‘ β†’ βˆͺ dom 𝑃 ∈ dom 𝑃)

Proof of Theorem unveldomd
StepHypRef Expression
1 unveldomd.1 . 2 (πœ‘ β†’ 𝑃 ∈ Prob)
2 domprobsiga 33405 . 2 (𝑃 ∈ Prob β†’ dom 𝑃 ∈ βˆͺ ran sigAlgebra)
3 sgon 33117 . 2 (dom 𝑃 ∈ βˆͺ ran sigAlgebra β†’ dom 𝑃 ∈ (sigAlgebraβ€˜βˆͺ dom 𝑃))
4 baselsiga 33108 . 2 (dom 𝑃 ∈ (sigAlgebraβ€˜βˆͺ dom 𝑃) β†’ βˆͺ dom 𝑃 ∈ dom 𝑃)
51, 2, 3, 44syl 19 1 (πœ‘ β†’ βˆͺ dom 𝑃 ∈ dom 𝑃)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2106  βˆͺ cuni 4908  dom cdm 5676  ran crn 5677  β€˜cfv 6543  sigAlgebracsiga 33101  Probcprb 33401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7411  df-esum 33021  df-siga 33102  df-meas 33189  df-prob 33402
This theorem is referenced by:  unveldom  33410  probdsb  33416  probtotrnd  33419  cndprobtot  33430  0rrv  33445  rrvadd  33446  dstfrvclim1  33471
  Copyright terms: Public domain W3C validator