![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > unveldomd | Structured version Visualization version GIF version |
Description: The universe is an element of the domain of the probability, the universe (entire probability space) being βͺ dom π in our construction. (Contributed by Thierry Arnoux, 22-Jan-2017.) |
Ref | Expression |
---|---|
unveldomd.1 | β’ (π β π β Prob) |
Ref | Expression |
---|---|
unveldomd | β’ (π β βͺ dom π β dom π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unveldomd.1 | . 2 β’ (π β π β Prob) | |
2 | domprobsiga 33405 | . 2 β’ (π β Prob β dom π β βͺ ran sigAlgebra) | |
3 | sgon 33117 | . 2 β’ (dom π β βͺ ran sigAlgebra β dom π β (sigAlgebraββͺ dom π)) | |
4 | baselsiga 33108 | . 2 β’ (dom π β (sigAlgebraββͺ dom π) β βͺ dom π β dom π) | |
5 | 1, 2, 3, 4 | 4syl 19 | 1 β’ (π β βͺ dom π β dom π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2106 βͺ cuni 4908 dom cdm 5676 ran crn 5677 βcfv 6543 sigAlgebracsiga 33101 Probcprb 33401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7411 df-esum 33021 df-siga 33102 df-meas 33189 df-prob 33402 |
This theorem is referenced by: unveldom 33410 probdsb 33416 probtotrnd 33419 cndprobtot 33430 0rrv 33445 rrvadd 33446 dstfrvclim1 33471 |
Copyright terms: Public domain | W3C validator |