| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unveldomd | Structured version Visualization version GIF version | ||
| Description: The universe is an element of the domain of the probability, the universe (entire probability space) being ∪ dom 𝑃 in our construction. (Contributed by Thierry Arnoux, 22-Jan-2017.) |
| Ref | Expression |
|---|---|
| unveldomd.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
| Ref | Expression |
|---|---|
| unveldomd | ⊢ (𝜑 → ∪ dom 𝑃 ∈ dom 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unveldomd.1 | . 2 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
| 2 | domprobsiga 34375 | . 2 ⊢ (𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra) | |
| 3 | sgon 34087 | . 2 ⊢ (dom 𝑃 ∈ ∪ ran sigAlgebra → dom 𝑃 ∈ (sigAlgebra‘∪ dom 𝑃)) | |
| 4 | baselsiga 34078 | . 2 ⊢ (dom 𝑃 ∈ (sigAlgebra‘∪ dom 𝑃) → ∪ dom 𝑃 ∈ dom 𝑃) | |
| 5 | 1, 2, 3, 4 | 4syl 19 | 1 ⊢ (𝜑 → ∪ dom 𝑃 ∈ dom 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∪ cuni 4867 dom cdm 5631 ran crn 5632 ‘cfv 6499 sigAlgebracsiga 34071 Probcprb 34371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-esum 33991 df-siga 34072 df-meas 34159 df-prob 34372 |
| This theorem is referenced by: unveldom 34380 probdsb 34386 probtotrnd 34389 cndprobtot 34400 0rrv 34415 rrvadd 34416 dstfrvclim1 34442 |
| Copyright terms: Public domain | W3C validator |