![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > unveldomd | Structured version Visualization version GIF version |
Description: The universe is an element of the domain of the probability, the universe (entire probability space) being ∪ dom 𝑃 in our construction. (Contributed by Thierry Arnoux, 22-Jan-2017.) |
Ref | Expression |
---|---|
unveldomd.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
Ref | Expression |
---|---|
unveldomd | ⊢ (𝜑 → ∪ dom 𝑃 ∈ dom 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unveldomd.1 | . 2 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
2 | domprobsiga 34376 | . 2 ⊢ (𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra) | |
3 | sgon 34088 | . 2 ⊢ (dom 𝑃 ∈ ∪ ran sigAlgebra → dom 𝑃 ∈ (sigAlgebra‘∪ dom 𝑃)) | |
4 | baselsiga 34079 | . 2 ⊢ (dom 𝑃 ∈ (sigAlgebra‘∪ dom 𝑃) → ∪ dom 𝑃 ∈ dom 𝑃) | |
5 | 1, 2, 3, 4 | 4syl 19 | 1 ⊢ (𝜑 → ∪ dom 𝑃 ∈ dom 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∪ cuni 4931 dom cdm 5700 ran crn 5701 ‘cfv 6573 sigAlgebracsiga 34072 Probcprb 34372 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-esum 33992 df-siga 34073 df-meas 34160 df-prob 34373 |
This theorem is referenced by: unveldom 34381 probdsb 34387 probtotrnd 34390 cndprobtot 34401 0rrv 34416 rrvadd 34417 dstfrvclim1 34442 |
Copyright terms: Public domain | W3C validator |