Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unveldomd Structured version   Visualization version   GIF version

Theorem unveldomd 34402
Description: The universe is an element of the domain of the probability, the universe (entire probability space) being dom 𝑃 in our construction. (Contributed by Thierry Arnoux, 22-Jan-2017.)
Hypothesis
Ref Expression
unveldomd.1 (𝜑𝑃 ∈ Prob)
Assertion
Ref Expression
unveldomd (𝜑 dom 𝑃 ∈ dom 𝑃)

Proof of Theorem unveldomd
StepHypRef Expression
1 unveldomd.1 . 2 (𝜑𝑃 ∈ Prob)
2 domprobsiga 34398 . 2 (𝑃 ∈ Prob → dom 𝑃 ran sigAlgebra)
3 sgon 34110 . 2 (dom 𝑃 ran sigAlgebra → dom 𝑃 ∈ (sigAlgebra‘ dom 𝑃))
4 baselsiga 34101 . 2 (dom 𝑃 ∈ (sigAlgebra‘ dom 𝑃) → dom 𝑃 ∈ dom 𝑃)
51, 2, 3, 44syl 19 1 (𝜑 dom 𝑃 ∈ dom 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   cuni 4861  dom cdm 5623  ran crn 5624  cfv 6486  sigAlgebracsiga 34094  Probcprb 34394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-esum 34014  df-siga 34095  df-meas 34182  df-prob 34395
This theorem is referenced by:  unveldom  34403  probdsb  34409  probtotrnd  34412  cndprobtot  34423  0rrv  34438  rrvadd  34439  dstfrvclim1  34465
  Copyright terms: Public domain W3C validator