Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0elsiga Structured version   Visualization version   GIF version

Theorem 0elsiga 33410
Description: A sigma-algebra contains the empty set. (Contributed by Thierry Arnoux, 4-Sep-2016.)
Assertion
Ref Expression
0elsiga (𝑆 ran sigAlgebra → ∅ ∈ 𝑆)

Proof of Theorem 0elsiga
Dummy variables 𝑜 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isrnsiga 33409 . . 3 (𝑆 ran sigAlgebra ↔ (𝑆 ∈ V ∧ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
21simprbi 495 . 2 (𝑆 ran sigAlgebra → ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
3 3simpa 1146 . . . 4 ((𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)) → (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆))
43adantl 480 . . 3 ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆))
54eximi 1835 . 2 (∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → ∃𝑜(𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆))
6 difeq2 4115 . . . . . 6 (𝑥 = 𝑜 → (𝑜𝑥) = (𝑜𝑜))
7 difid 4369 . . . . . 6 (𝑜𝑜) = ∅
86, 7eqtrdi 2786 . . . . 5 (𝑥 = 𝑜 → (𝑜𝑥) = ∅)
98eleq1d 2816 . . . 4 (𝑥 = 𝑜 → ((𝑜𝑥) ∈ 𝑆 ↔ ∅ ∈ 𝑆))
109rspcva 3609 . . 3 ((𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆) → ∅ ∈ 𝑆)
1110exlimiv 1931 . 2 (∃𝑜(𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆) → ∅ ∈ 𝑆)
122, 5, 113syl 18 1 (𝑆 ran sigAlgebra → ∅ ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1085  wex 1779  wcel 2104  wral 3059  Vcvv 3472  cdif 3944  wss 3947  c0 4321  𝒫 cpw 4601   cuni 4907   class class class wbr 5147  ran crn 5676  ωcom 7857  cdom 8939  sigAlgebracsiga 33404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-fv 6550  df-siga 33405
This theorem is referenced by:  sigaclfu2  33417  sigaldsys  33455  brsiga  33479  measvuni  33510  measinb  33517  measres  33518  measdivcst  33520  measdivcstALTV  33521  cntmeas  33522  volmeas  33527  mbfmcst  33556  sibfof  33637  nuleldmp  33714  0rrv  33748  dstrvprob  33768
  Copyright terms: Public domain W3C validator