Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0elsiga | Structured version Visualization version GIF version |
Description: A sigma-algebra contains the empty set. (Contributed by Thierry Arnoux, 4-Sep-2016.) |
Ref | Expression |
---|---|
0elsiga | ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∅ ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrnsiga 32081 | . . 3 ⊢ (𝑆 ∈ ∪ ran sigAlgebra ↔ (𝑆 ∈ V ∧ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))))) | |
2 | 1 | simprbi 497 | . 2 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)))) |
3 | 3simpa 1147 | . . . 4 ⊢ ((𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)) → (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆)) | |
4 | 3 | adantl 482 | . . 3 ⊢ ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))) → (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆)) |
5 | 4 | eximi 1837 | . 2 ⊢ (∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))) → ∃𝑜(𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆)) |
6 | difeq2 4051 | . . . . . 6 ⊢ (𝑥 = 𝑜 → (𝑜 ∖ 𝑥) = (𝑜 ∖ 𝑜)) | |
7 | difid 4304 | . . . . . 6 ⊢ (𝑜 ∖ 𝑜) = ∅ | |
8 | 6, 7 | eqtrdi 2794 | . . . . 5 ⊢ (𝑥 = 𝑜 → (𝑜 ∖ 𝑥) = ∅) |
9 | 8 | eleq1d 2823 | . . . 4 ⊢ (𝑥 = 𝑜 → ((𝑜 ∖ 𝑥) ∈ 𝑆 ↔ ∅ ∈ 𝑆)) |
10 | 9 | rspcva 3559 | . . 3 ⊢ ((𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆) → ∅ ∈ 𝑆) |
11 | 10 | exlimiv 1933 | . 2 ⊢ (∃𝑜(𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆) → ∅ ∈ 𝑆) |
12 | 2, 5, 11 | 3syl 18 | 1 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∅ ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∃wex 1782 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ∖ cdif 3884 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 ∪ cuni 4839 class class class wbr 5074 ran crn 5590 ωcom 7712 ≼ cdom 8731 sigAlgebracsiga 32076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 df-siga 32077 |
This theorem is referenced by: sigaclfu2 32089 sigaldsys 32127 brsiga 32151 measvuni 32182 measinb 32189 measres 32190 measdivcst 32192 measdivcstALTV 32193 cntmeas 32194 volmeas 32199 mbfmcst 32226 sibfof 32307 nuleldmp 32384 0rrv 32418 dstrvprob 32438 |
Copyright terms: Public domain | W3C validator |