| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0elsiga | Structured version Visualization version GIF version | ||
| Description: A sigma-algebra contains the empty set. (Contributed by Thierry Arnoux, 4-Sep-2016.) |
| Ref | Expression |
|---|---|
| 0elsiga | ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∅ ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrnsiga 34144 | . . 3 ⊢ (𝑆 ∈ ∪ ran sigAlgebra ↔ (𝑆 ∈ V ∧ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))))) | |
| 2 | 1 | simprbi 496 | . 2 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)))) |
| 3 | 3simpa 1148 | . . . 4 ⊢ ((𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)) → (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆)) | |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))) → (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆)) |
| 5 | 4 | eximi 1835 | . 2 ⊢ (∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))) → ∃𝑜(𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆)) |
| 6 | difeq2 4095 | . . . . . 6 ⊢ (𝑥 = 𝑜 → (𝑜 ∖ 𝑥) = (𝑜 ∖ 𝑜)) | |
| 7 | difid 4351 | . . . . . 6 ⊢ (𝑜 ∖ 𝑜) = ∅ | |
| 8 | 6, 7 | eqtrdi 2786 | . . . . 5 ⊢ (𝑥 = 𝑜 → (𝑜 ∖ 𝑥) = ∅) |
| 9 | 8 | eleq1d 2819 | . . . 4 ⊢ (𝑥 = 𝑜 → ((𝑜 ∖ 𝑥) ∈ 𝑆 ↔ ∅ ∈ 𝑆)) |
| 10 | 9 | rspcva 3599 | . . 3 ⊢ ((𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆) → ∅ ∈ 𝑆) |
| 11 | 10 | exlimiv 1930 | . 2 ⊢ (∃𝑜(𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆) → ∅ ∈ 𝑆) |
| 12 | 2, 5, 11 | 3syl 18 | 1 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∅ ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∃wex 1779 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 ∖ cdif 3923 ⊆ wss 3926 ∅c0 4308 𝒫 cpw 4575 ∪ cuni 4883 class class class wbr 5119 ran crn 5655 ωcom 7861 ≼ cdom 8957 sigAlgebracsiga 34139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-fv 6539 df-siga 34140 |
| This theorem is referenced by: sigaclfu2 34152 sigaldsys 34190 brsiga 34214 measvuni 34245 measinb 34252 measres 34253 measdivcst 34255 measdivcstALTV 34256 cntmeas 34257 volmeas 34262 mbfmcst 34291 sibfof 34372 nuleldmp 34449 0rrv 34483 dstrvprob 34504 |
| Copyright terms: Public domain | W3C validator |