Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0elsiga Structured version   Visualization version   GIF version

Theorem 0elsiga 32753
Description: A sigma-algebra contains the empty set. (Contributed by Thierry Arnoux, 4-Sep-2016.)
Assertion
Ref Expression
0elsiga (𝑆 ran sigAlgebra → ∅ ∈ 𝑆)

Proof of Theorem 0elsiga
Dummy variables 𝑜 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isrnsiga 32752 . . 3 (𝑆 ran sigAlgebra ↔ (𝑆 ∈ V ∧ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
21simprbi 498 . 2 (𝑆 ran sigAlgebra → ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
3 3simpa 1149 . . . 4 ((𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)) → (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆))
43adantl 483 . . 3 ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆))
54eximi 1838 . 2 (∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → ∃𝑜(𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆))
6 difeq2 4081 . . . . . 6 (𝑥 = 𝑜 → (𝑜𝑥) = (𝑜𝑜))
7 difid 4335 . . . . . 6 (𝑜𝑜) = ∅
86, 7eqtrdi 2793 . . . . 5 (𝑥 = 𝑜 → (𝑜𝑥) = ∅)
98eleq1d 2823 . . . 4 (𝑥 = 𝑜 → ((𝑜𝑥) ∈ 𝑆 ↔ ∅ ∈ 𝑆))
109rspcva 3582 . . 3 ((𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆) → ∅ ∈ 𝑆)
1110exlimiv 1934 . 2 (∃𝑜(𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆) → ∅ ∈ 𝑆)
122, 5, 113syl 18 1 (𝑆 ran sigAlgebra → ∅ ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088  wex 1782  wcel 2107  wral 3065  Vcvv 3448  cdif 3912  wss 3915  c0 4287  𝒫 cpw 4565   cuni 4870   class class class wbr 5110  ran crn 5639  ωcom 7807  cdom 8888  sigAlgebracsiga 32747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-fv 6509  df-siga 32748
This theorem is referenced by:  sigaclfu2  32760  sigaldsys  32798  brsiga  32822  measvuni  32853  measinb  32860  measres  32861  measdivcst  32863  measdivcstALTV  32864  cntmeas  32865  volmeas  32870  mbfmcst  32899  sibfof  32980  nuleldmp  33057  0rrv  33091  dstrvprob  33111
  Copyright terms: Public domain W3C validator