Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0elsiga Structured version   Visualization version   GIF version

Theorem 0elsiga 31018
Description: A sigma-algebra contains the empty set. (Contributed by Thierry Arnoux, 4-Sep-2016.)
Assertion
Ref Expression
0elsiga (𝑆 ran sigAlgebra → ∅ ∈ 𝑆)

Proof of Theorem 0elsiga
Dummy variables 𝑜 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isrnsiga 31017 . . 3 (𝑆 ran sigAlgebra ↔ (𝑆 ∈ V ∧ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
21simprbi 489 . 2 (𝑆 ran sigAlgebra → ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
3 3simpa 1128 . . . 4 ((𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)) → (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆))
43adantl 474 . . 3 ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆))
54eximi 1797 . 2 (∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → ∃𝑜(𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆))
6 difeq2 3985 . . . . . 6 (𝑥 = 𝑜 → (𝑜𝑥) = (𝑜𝑜))
7 difid 4218 . . . . . 6 (𝑜𝑜) = ∅
86, 7syl6eq 2830 . . . . 5 (𝑥 = 𝑜 → (𝑜𝑥) = ∅)
98eleq1d 2850 . . . 4 (𝑥 = 𝑜 → ((𝑜𝑥) ∈ 𝑆 ↔ ∅ ∈ 𝑆))
109rspcva 3533 . . 3 ((𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆) → ∅ ∈ 𝑆)
1110exlimiv 1889 . 2 (∃𝑜(𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆) → ∅ ∈ 𝑆)
122, 5, 113syl 18 1 (𝑆 ran sigAlgebra → ∅ ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1068  wex 1742  wcel 2050  wral 3088  Vcvv 3415  cdif 3828  wss 3831  c0 4180  𝒫 cpw 4423   cuni 4713   class class class wbr 4930  ran crn 5409  ωcom 7398  cdom 8306  sigAlgebracsiga 31011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-op 4449  df-uni 4714  df-br 4931  df-opab 4993  df-mpt 5010  df-id 5313  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-iota 6154  df-fun 6192  df-fn 6193  df-fv 6198  df-siga 31012
This theorem is referenced by:  sigaclfu2  31025  sigaldsys  31063  brsiga  31087  measvuni  31118  measinb  31125  measres  31126  measdivcstOLD  31128  measdivcst  31129  cntmeas  31130  volmeas  31135  mbfmcst  31162  sibfof  31243  nuleldmp  31321  0rrv  31355  dstrvprob  31375
  Copyright terms: Public domain W3C validator