Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0elsiga Structured version   Visualization version   GIF version

Theorem 0elsiga 34115
Description: A sigma-algebra contains the empty set. (Contributed by Thierry Arnoux, 4-Sep-2016.)
Assertion
Ref Expression
0elsiga (𝑆 ran sigAlgebra → ∅ ∈ 𝑆)

Proof of Theorem 0elsiga
Dummy variables 𝑜 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isrnsiga 34114 . . 3 (𝑆 ran sigAlgebra ↔ (𝑆 ∈ V ∧ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
21simprbi 496 . 2 (𝑆 ran sigAlgebra → ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
3 3simpa 1149 . . . 4 ((𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)) → (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆))
43adantl 481 . . 3 ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆))
54eximi 1835 . 2 (∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → ∃𝑜(𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆))
6 difeq2 4120 . . . . . 6 (𝑥 = 𝑜 → (𝑜𝑥) = (𝑜𝑜))
7 difid 4376 . . . . . 6 (𝑜𝑜) = ∅
86, 7eqtrdi 2793 . . . . 5 (𝑥 = 𝑜 → (𝑜𝑥) = ∅)
98eleq1d 2826 . . . 4 (𝑥 = 𝑜 → ((𝑜𝑥) ∈ 𝑆 ↔ ∅ ∈ 𝑆))
109rspcva 3620 . . 3 ((𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆) → ∅ ∈ 𝑆)
1110exlimiv 1930 . 2 (∃𝑜(𝑜𝑆 ∧ ∀𝑥𝑆 (𝑜𝑥) ∈ 𝑆) → ∅ ∈ 𝑆)
122, 5, 113syl 18 1 (𝑆 ran sigAlgebra → ∅ ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wex 1779  wcel 2108  wral 3061  Vcvv 3480  cdif 3948  wss 3951  c0 4333  𝒫 cpw 4600   cuni 4907   class class class wbr 5143  ran crn 5686  ωcom 7887  cdom 8983  sigAlgebracsiga 34109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-fv 6569  df-siga 34110
This theorem is referenced by:  sigaclfu2  34122  sigaldsys  34160  brsiga  34184  measvuni  34215  measinb  34222  measres  34223  measdivcst  34225  measdivcstALTV  34226  cntmeas  34227  volmeas  34232  mbfmcst  34261  sibfof  34342  nuleldmp  34419  0rrv  34453  dstrvprob  34474
  Copyright terms: Public domain W3C validator