![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0elsiga | Structured version Visualization version GIF version |
Description: A sigma-algebra contains the empty set. (Contributed by Thierry Arnoux, 4-Sep-2016.) |
Ref | Expression |
---|---|
0elsiga | ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∅ ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrnsiga 33409 | . . 3 ⊢ (𝑆 ∈ ∪ ran sigAlgebra ↔ (𝑆 ∈ V ∧ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))))) | |
2 | 1 | simprbi 495 | . 2 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)))) |
3 | 3simpa 1146 | . . . 4 ⊢ ((𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)) → (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆)) | |
4 | 3 | adantl 480 | . . 3 ⊢ ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))) → (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆)) |
5 | 4 | eximi 1835 | . 2 ⊢ (∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))) → ∃𝑜(𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆)) |
6 | difeq2 4115 | . . . . . 6 ⊢ (𝑥 = 𝑜 → (𝑜 ∖ 𝑥) = (𝑜 ∖ 𝑜)) | |
7 | difid 4369 | . . . . . 6 ⊢ (𝑜 ∖ 𝑜) = ∅ | |
8 | 6, 7 | eqtrdi 2786 | . . . . 5 ⊢ (𝑥 = 𝑜 → (𝑜 ∖ 𝑥) = ∅) |
9 | 8 | eleq1d 2816 | . . . 4 ⊢ (𝑥 = 𝑜 → ((𝑜 ∖ 𝑥) ∈ 𝑆 ↔ ∅ ∈ 𝑆)) |
10 | 9 | rspcva 3609 | . . 3 ⊢ ((𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆) → ∅ ∈ 𝑆) |
11 | 10 | exlimiv 1931 | . 2 ⊢ (∃𝑜(𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆) → ∅ ∈ 𝑆) |
12 | 2, 5, 11 | 3syl 18 | 1 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∅ ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 ∃wex 1779 ∈ wcel 2104 ∀wral 3059 Vcvv 3472 ∖ cdif 3944 ⊆ wss 3947 ∅c0 4321 𝒫 cpw 4601 ∪ cuni 4907 class class class wbr 5147 ran crn 5676 ωcom 7857 ≼ cdom 8939 sigAlgebracsiga 33404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-fv 6550 df-siga 33405 |
This theorem is referenced by: sigaclfu2 33417 sigaldsys 33455 brsiga 33479 measvuni 33510 measinb 33517 measres 33518 measdivcst 33520 measdivcstALTV 33521 cntmeas 33522 volmeas 33527 mbfmcst 33556 sibfof 33637 nuleldmp 33714 0rrv 33748 dstrvprob 33768 |
Copyright terms: Public domain | W3C validator |