| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0elsiga | Structured version Visualization version GIF version | ||
| Description: A sigma-algebra contains the empty set. (Contributed by Thierry Arnoux, 4-Sep-2016.) |
| Ref | Expression |
|---|---|
| 0elsiga | ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∅ ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrnsiga 34103 | . . 3 ⊢ (𝑆 ∈ ∪ ran sigAlgebra ↔ (𝑆 ∈ V ∧ ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))))) | |
| 2 | 1 | simprbi 496 | . 2 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)))) |
| 3 | 3simpa 1148 | . . . 4 ⊢ ((𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)) → (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆)) | |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))) → (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆)) |
| 5 | 4 | eximi 1835 | . 2 ⊢ (∃𝑜(𝑆 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))) → ∃𝑜(𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆)) |
| 6 | difeq2 4083 | . . . . . 6 ⊢ (𝑥 = 𝑜 → (𝑜 ∖ 𝑥) = (𝑜 ∖ 𝑜)) | |
| 7 | difid 4339 | . . . . . 6 ⊢ (𝑜 ∖ 𝑜) = ∅ | |
| 8 | 6, 7 | eqtrdi 2780 | . . . . 5 ⊢ (𝑥 = 𝑜 → (𝑜 ∖ 𝑥) = ∅) |
| 9 | 8 | eleq1d 2813 | . . . 4 ⊢ (𝑥 = 𝑜 → ((𝑜 ∖ 𝑥) ∈ 𝑆 ↔ ∅ ∈ 𝑆)) |
| 10 | 9 | rspcva 3586 | . . 3 ⊢ ((𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆) → ∅ ∈ 𝑆) |
| 11 | 10 | exlimiv 1930 | . 2 ⊢ (∃𝑜(𝑜 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑜 ∖ 𝑥) ∈ 𝑆) → ∅ ∈ 𝑆) |
| 12 | 2, 5, 11 | 3syl 18 | 1 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∅ ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∃wex 1779 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ∖ cdif 3911 ⊆ wss 3914 ∅c0 4296 𝒫 cpw 4563 ∪ cuni 4871 class class class wbr 5107 ran crn 5639 ωcom 7842 ≼ cdom 8916 sigAlgebracsiga 34098 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 df-siga 34099 |
| This theorem is referenced by: sigaclfu2 34111 sigaldsys 34149 brsiga 34173 measvuni 34204 measinb 34211 measres 34212 measdivcst 34214 measdivcstALTV 34215 cntmeas 34216 volmeas 34221 mbfmcst 34250 sibfof 34331 nuleldmp 34408 0rrv 34442 dstrvprob 34463 |
| Copyright terms: Public domain | W3C validator |