Step | Hyp | Ref
| Expression |
1 | | oveq2 7283 |
. . . . . 6
⊢ (𝑗 = 1 → (𝐴↑𝑗) = (𝐴↑1)) |
2 | 1 | eqeq1d 2740 |
. . . . 5
⊢ (𝑗 = 1 → ((𝐴↑𝑗) = 0 ↔ (𝐴↑1) = 0)) |
3 | 2 | bibi1d 344 |
. . . 4
⊢ (𝑗 = 1 → (((𝐴↑𝑗) = 0 ↔ 𝐴 = 0) ↔ ((𝐴↑1) = 0 ↔ 𝐴 = 0))) |
4 | 3 | imbi2d 341 |
. . 3
⊢ (𝑗 = 1 → ((𝐴 ∈ ℂ → ((𝐴↑𝑗) = 0 ↔ 𝐴 = 0)) ↔ (𝐴 ∈ ℂ → ((𝐴↑1) = 0 ↔ 𝐴 = 0)))) |
5 | | oveq2 7283 |
. . . . . 6
⊢ (𝑗 = 𝑘 → (𝐴↑𝑗) = (𝐴↑𝑘)) |
6 | 5 | eqeq1d 2740 |
. . . . 5
⊢ (𝑗 = 𝑘 → ((𝐴↑𝑗) = 0 ↔ (𝐴↑𝑘) = 0)) |
7 | 6 | bibi1d 344 |
. . . 4
⊢ (𝑗 = 𝑘 → (((𝐴↑𝑗) = 0 ↔ 𝐴 = 0) ↔ ((𝐴↑𝑘) = 0 ↔ 𝐴 = 0))) |
8 | 7 | imbi2d 341 |
. . 3
⊢ (𝑗 = 𝑘 → ((𝐴 ∈ ℂ → ((𝐴↑𝑗) = 0 ↔ 𝐴 = 0)) ↔ (𝐴 ∈ ℂ → ((𝐴↑𝑘) = 0 ↔ 𝐴 = 0)))) |
9 | | oveq2 7283 |
. . . . . 6
⊢ (𝑗 = (𝑘 + 1) → (𝐴↑𝑗) = (𝐴↑(𝑘 + 1))) |
10 | 9 | eqeq1d 2740 |
. . . . 5
⊢ (𝑗 = (𝑘 + 1) → ((𝐴↑𝑗) = 0 ↔ (𝐴↑(𝑘 + 1)) = 0)) |
11 | 10 | bibi1d 344 |
. . . 4
⊢ (𝑗 = (𝑘 + 1) → (((𝐴↑𝑗) = 0 ↔ 𝐴 = 0) ↔ ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0))) |
12 | 11 | imbi2d 341 |
. . 3
⊢ (𝑗 = (𝑘 + 1) → ((𝐴 ∈ ℂ → ((𝐴↑𝑗) = 0 ↔ 𝐴 = 0)) ↔ (𝐴 ∈ ℂ → ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0)))) |
13 | | oveq2 7283 |
. . . . . 6
⊢ (𝑗 = 𝑁 → (𝐴↑𝑗) = (𝐴↑𝑁)) |
14 | 13 | eqeq1d 2740 |
. . . . 5
⊢ (𝑗 = 𝑁 → ((𝐴↑𝑗) = 0 ↔ (𝐴↑𝑁) = 0)) |
15 | 14 | bibi1d 344 |
. . . 4
⊢ (𝑗 = 𝑁 → (((𝐴↑𝑗) = 0 ↔ 𝐴 = 0) ↔ ((𝐴↑𝑁) = 0 ↔ 𝐴 = 0))) |
16 | 15 | imbi2d 341 |
. . 3
⊢ (𝑗 = 𝑁 → ((𝐴 ∈ ℂ → ((𝐴↑𝑗) = 0 ↔ 𝐴 = 0)) ↔ (𝐴 ∈ ℂ → ((𝐴↑𝑁) = 0 ↔ 𝐴 = 0)))) |
17 | | exp1 13788 |
. . . 4
⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) |
18 | 17 | eqeq1d 2740 |
. . 3
⊢ (𝐴 ∈ ℂ → ((𝐴↑1) = 0 ↔ 𝐴 = 0)) |
19 | | nnnn0 12240 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) |
20 | | expp1 13789 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑(𝑘 + 1)) = ((𝐴↑𝑘) · 𝐴)) |
21 | 20 | eqeq1d 2740 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝐴↑(𝑘 + 1)) = 0 ↔ ((𝐴↑𝑘) · 𝐴) = 0)) |
22 | | expcl 13800 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑𝑘) ∈
ℂ) |
23 | | simpl 483 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ 𝐴 ∈
ℂ) |
24 | 22, 23 | mul0ord 11625 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (((𝐴↑𝑘) · 𝐴) = 0 ↔ ((𝐴↑𝑘) = 0 ∨ 𝐴 = 0))) |
25 | 21, 24 | bitrd 278 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝐴↑(𝑘 + 1)) = 0 ↔ ((𝐴↑𝑘) = 0 ∨ 𝐴 = 0))) |
26 | 19, 25 | sylan2 593 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((𝐴↑(𝑘 + 1)) = 0 ↔ ((𝐴↑𝑘) = 0 ∨ 𝐴 = 0))) |
27 | | biimp 214 |
. . . . . . . . 9
⊢ (((𝐴↑𝑘) = 0 ↔ 𝐴 = 0) → ((𝐴↑𝑘) = 0 → 𝐴 = 0)) |
28 | | idd 24 |
. . . . . . . . 9
⊢ (((𝐴↑𝑘) = 0 ↔ 𝐴 = 0) → (𝐴 = 0 → 𝐴 = 0)) |
29 | 27, 28 | jaod 856 |
. . . . . . . 8
⊢ (((𝐴↑𝑘) = 0 ↔ 𝐴 = 0) → (((𝐴↑𝑘) = 0 ∨ 𝐴 = 0) → 𝐴 = 0)) |
30 | | olc 865 |
. . . . . . . 8
⊢ (𝐴 = 0 → ((𝐴↑𝑘) = 0 ∨ 𝐴 = 0)) |
31 | 29, 30 | impbid1 224 |
. . . . . . 7
⊢ (((𝐴↑𝑘) = 0 ↔ 𝐴 = 0) → (((𝐴↑𝑘) = 0 ∨ 𝐴 = 0) ↔ 𝐴 = 0)) |
32 | 26, 31 | sylan9bb 510 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) ∧ ((𝐴↑𝑘) = 0 ↔ 𝐴 = 0)) → ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0)) |
33 | 32 | exp31 420 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (𝑘 ∈ ℕ → (((𝐴↑𝑘) = 0 ↔ 𝐴 = 0) → ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0)))) |
34 | 33 | com12 32 |
. . . 4
⊢ (𝑘 ∈ ℕ → (𝐴 ∈ ℂ → (((𝐴↑𝑘) = 0 ↔ 𝐴 = 0) → ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0)))) |
35 | 34 | a2d 29 |
. . 3
⊢ (𝑘 ∈ ℕ → ((𝐴 ∈ ℂ → ((𝐴↑𝑘) = 0 ↔ 𝐴 = 0)) → (𝐴 ∈ ℂ → ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0)))) |
36 | 4, 8, 12, 16, 18, 35 | nnind 11991 |
. 2
⊢ (𝑁 ∈ ℕ → (𝐴 ∈ ℂ → ((𝐴↑𝑁) = 0 ↔ 𝐴 = 0))) |
37 | 36 | impcom 408 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑁) = 0 ↔ 𝐴 = 0)) |