MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expeq0 Structured version   Visualization version   GIF version

Theorem expeq0 13458
Description: Positive integer exponentiation is 0 iff its mantissa is 0. (Contributed by NM, 23-Feb-2005.)
Assertion
Ref Expression
expeq0 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) = 0 ↔ 𝐴 = 0))

Proof of Theorem expeq0
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7163 . . . . . 6 (𝑗 = 1 → (𝐴𝑗) = (𝐴↑1))
21eqeq1d 2823 . . . . 5 (𝑗 = 1 → ((𝐴𝑗) = 0 ↔ (𝐴↑1) = 0))
32bibi1d 346 . . . 4 (𝑗 = 1 → (((𝐴𝑗) = 0 ↔ 𝐴 = 0) ↔ ((𝐴↑1) = 0 ↔ 𝐴 = 0)))
43imbi2d 343 . . 3 (𝑗 = 1 → ((𝐴 ∈ ℂ → ((𝐴𝑗) = 0 ↔ 𝐴 = 0)) ↔ (𝐴 ∈ ℂ → ((𝐴↑1) = 0 ↔ 𝐴 = 0))))
5 oveq2 7163 . . . . . 6 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
65eqeq1d 2823 . . . . 5 (𝑗 = 𝑘 → ((𝐴𝑗) = 0 ↔ (𝐴𝑘) = 0))
76bibi1d 346 . . . 4 (𝑗 = 𝑘 → (((𝐴𝑗) = 0 ↔ 𝐴 = 0) ↔ ((𝐴𝑘) = 0 ↔ 𝐴 = 0)))
87imbi2d 343 . . 3 (𝑗 = 𝑘 → ((𝐴 ∈ ℂ → ((𝐴𝑗) = 0 ↔ 𝐴 = 0)) ↔ (𝐴 ∈ ℂ → ((𝐴𝑘) = 0 ↔ 𝐴 = 0))))
9 oveq2 7163 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
109eqeq1d 2823 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝐴𝑗) = 0 ↔ (𝐴↑(𝑘 + 1)) = 0))
1110bibi1d 346 . . . 4 (𝑗 = (𝑘 + 1) → (((𝐴𝑗) = 0 ↔ 𝐴 = 0) ↔ ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0)))
1211imbi2d 343 . . 3 (𝑗 = (𝑘 + 1) → ((𝐴 ∈ ℂ → ((𝐴𝑗) = 0 ↔ 𝐴 = 0)) ↔ (𝐴 ∈ ℂ → ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0))))
13 oveq2 7163 . . . . . 6 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
1413eqeq1d 2823 . . . . 5 (𝑗 = 𝑁 → ((𝐴𝑗) = 0 ↔ (𝐴𝑁) = 0))
1514bibi1d 346 . . . 4 (𝑗 = 𝑁 → (((𝐴𝑗) = 0 ↔ 𝐴 = 0) ↔ ((𝐴𝑁) = 0 ↔ 𝐴 = 0)))
1615imbi2d 343 . . 3 (𝑗 = 𝑁 → ((𝐴 ∈ ℂ → ((𝐴𝑗) = 0 ↔ 𝐴 = 0)) ↔ (𝐴 ∈ ℂ → ((𝐴𝑁) = 0 ↔ 𝐴 = 0))))
17 exp1 13434 . . . 4 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
1817eqeq1d 2823 . . 3 (𝐴 ∈ ℂ → ((𝐴↑1) = 0 ↔ 𝐴 = 0))
19 nnnn0 11903 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
20 expp1 13435 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
2120eqeq1d 2823 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑘 + 1)) = 0 ↔ ((𝐴𝑘) · 𝐴) = 0))
22 expcl 13446 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
23 simpl 485 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
2422, 23mul0ord 11289 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑘) · 𝐴) = 0 ↔ ((𝐴𝑘) = 0 ∨ 𝐴 = 0)))
2521, 24bitrd 281 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑘 + 1)) = 0 ↔ ((𝐴𝑘) = 0 ∨ 𝐴 = 0)))
2619, 25sylan2 594 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((𝐴↑(𝑘 + 1)) = 0 ↔ ((𝐴𝑘) = 0 ∨ 𝐴 = 0)))
27 biimp 217 . . . . . . . . 9 (((𝐴𝑘) = 0 ↔ 𝐴 = 0) → ((𝐴𝑘) = 0 → 𝐴 = 0))
28 idd 24 . . . . . . . . 9 (((𝐴𝑘) = 0 ↔ 𝐴 = 0) → (𝐴 = 0 → 𝐴 = 0))
2927, 28jaod 855 . . . . . . . 8 (((𝐴𝑘) = 0 ↔ 𝐴 = 0) → (((𝐴𝑘) = 0 ∨ 𝐴 = 0) → 𝐴 = 0))
30 olc 864 . . . . . . . 8 (𝐴 = 0 → ((𝐴𝑘) = 0 ∨ 𝐴 = 0))
3129, 30impbid1 227 . . . . . . 7 (((𝐴𝑘) = 0 ↔ 𝐴 = 0) → (((𝐴𝑘) = 0 ∨ 𝐴 = 0) ↔ 𝐴 = 0))
3226, 31sylan9bb 512 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) ∧ ((𝐴𝑘) = 0 ↔ 𝐴 = 0)) → ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0))
3332exp31 422 . . . . 5 (𝐴 ∈ ℂ → (𝑘 ∈ ℕ → (((𝐴𝑘) = 0 ↔ 𝐴 = 0) → ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0))))
3433com12 32 . . . 4 (𝑘 ∈ ℕ → (𝐴 ∈ ℂ → (((𝐴𝑘) = 0 ↔ 𝐴 = 0) → ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0))))
3534a2d 29 . . 3 (𝑘 ∈ ℕ → ((𝐴 ∈ ℂ → ((𝐴𝑘) = 0 ↔ 𝐴 = 0)) → (𝐴 ∈ ℂ → ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0))))
364, 8, 12, 16, 18, 35nnind 11655 . 2 (𝑁 ∈ ℕ → (𝐴 ∈ ℂ → ((𝐴𝑁) = 0 ↔ 𝐴 = 0)))
3736impcom 410 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) = 0 ↔ 𝐴 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  (class class class)co 7155  cc 10534  0cc0 10536  1c1 10537   + caddc 10539   · cmul 10541  cn 11637  0cn0 11896  cexp 13428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-n0 11897  df-z 11981  df-uz 12243  df-seq 13369  df-exp 13429
This theorem is referenced by:  expne0  13459  0exp  13463  sqeq0  13485  expeq0d  13505  rpexp  16063  dffltz  39269
  Copyright terms: Public domain W3C validator