MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expeq0 Structured version   Visualization version   GIF version

Theorem expeq0 14095
Description: A positive integer power is zero if and only if its base is zero. (Contributed by NM, 23-Feb-2005.)
Assertion
Ref Expression
expeq0 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) = 0 ↔ 𝐴 = 0))

Proof of Theorem expeq0
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7432 . . . . . 6 (𝑗 = 1 → (𝐴𝑗) = (𝐴↑1))
21eqeq1d 2729 . . . . 5 (𝑗 = 1 → ((𝐴𝑗) = 0 ↔ (𝐴↑1) = 0))
32bibi1d 342 . . . 4 (𝑗 = 1 → (((𝐴𝑗) = 0 ↔ 𝐴 = 0) ↔ ((𝐴↑1) = 0 ↔ 𝐴 = 0)))
43imbi2d 339 . . 3 (𝑗 = 1 → ((𝐴 ∈ ℂ → ((𝐴𝑗) = 0 ↔ 𝐴 = 0)) ↔ (𝐴 ∈ ℂ → ((𝐴↑1) = 0 ↔ 𝐴 = 0))))
5 oveq2 7432 . . . . . 6 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
65eqeq1d 2729 . . . . 5 (𝑗 = 𝑘 → ((𝐴𝑗) = 0 ↔ (𝐴𝑘) = 0))
76bibi1d 342 . . . 4 (𝑗 = 𝑘 → (((𝐴𝑗) = 0 ↔ 𝐴 = 0) ↔ ((𝐴𝑘) = 0 ↔ 𝐴 = 0)))
87imbi2d 339 . . 3 (𝑗 = 𝑘 → ((𝐴 ∈ ℂ → ((𝐴𝑗) = 0 ↔ 𝐴 = 0)) ↔ (𝐴 ∈ ℂ → ((𝐴𝑘) = 0 ↔ 𝐴 = 0))))
9 oveq2 7432 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
109eqeq1d 2729 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝐴𝑗) = 0 ↔ (𝐴↑(𝑘 + 1)) = 0))
1110bibi1d 342 . . . 4 (𝑗 = (𝑘 + 1) → (((𝐴𝑗) = 0 ↔ 𝐴 = 0) ↔ ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0)))
1211imbi2d 339 . . 3 (𝑗 = (𝑘 + 1) → ((𝐴 ∈ ℂ → ((𝐴𝑗) = 0 ↔ 𝐴 = 0)) ↔ (𝐴 ∈ ℂ → ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0))))
13 oveq2 7432 . . . . . 6 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
1413eqeq1d 2729 . . . . 5 (𝑗 = 𝑁 → ((𝐴𝑗) = 0 ↔ (𝐴𝑁) = 0))
1514bibi1d 342 . . . 4 (𝑗 = 𝑁 → (((𝐴𝑗) = 0 ↔ 𝐴 = 0) ↔ ((𝐴𝑁) = 0 ↔ 𝐴 = 0)))
1615imbi2d 339 . . 3 (𝑗 = 𝑁 → ((𝐴 ∈ ℂ → ((𝐴𝑗) = 0 ↔ 𝐴 = 0)) ↔ (𝐴 ∈ ℂ → ((𝐴𝑁) = 0 ↔ 𝐴 = 0))))
17 exp1 14070 . . . 4 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
1817eqeq1d 2729 . . 3 (𝐴 ∈ ℂ → ((𝐴↑1) = 0 ↔ 𝐴 = 0))
19 nnnn0 12515 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
20 expp1 14071 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
2120eqeq1d 2729 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑘 + 1)) = 0 ↔ ((𝐴𝑘) · 𝐴) = 0))
22 expcl 14082 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
23 simpl 481 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
2422, 23mul0ord 11900 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑘) · 𝐴) = 0 ↔ ((𝐴𝑘) = 0 ∨ 𝐴 = 0)))
2521, 24bitrd 278 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑘 + 1)) = 0 ↔ ((𝐴𝑘) = 0 ∨ 𝐴 = 0)))
2619, 25sylan2 591 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((𝐴↑(𝑘 + 1)) = 0 ↔ ((𝐴𝑘) = 0 ∨ 𝐴 = 0)))
27 biimp 214 . . . . . . . . 9 (((𝐴𝑘) = 0 ↔ 𝐴 = 0) → ((𝐴𝑘) = 0 → 𝐴 = 0))
28 idd 24 . . . . . . . . 9 (((𝐴𝑘) = 0 ↔ 𝐴 = 0) → (𝐴 = 0 → 𝐴 = 0))
2927, 28jaod 857 . . . . . . . 8 (((𝐴𝑘) = 0 ↔ 𝐴 = 0) → (((𝐴𝑘) = 0 ∨ 𝐴 = 0) → 𝐴 = 0))
30 olc 866 . . . . . . . 8 (𝐴 = 0 → ((𝐴𝑘) = 0 ∨ 𝐴 = 0))
3129, 30impbid1 224 . . . . . . 7 (((𝐴𝑘) = 0 ↔ 𝐴 = 0) → (((𝐴𝑘) = 0 ∨ 𝐴 = 0) ↔ 𝐴 = 0))
3226, 31sylan9bb 508 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) ∧ ((𝐴𝑘) = 0 ↔ 𝐴 = 0)) → ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0))
3332exp31 418 . . . . 5 (𝐴 ∈ ℂ → (𝑘 ∈ ℕ → (((𝐴𝑘) = 0 ↔ 𝐴 = 0) → ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0))))
3433com12 32 . . . 4 (𝑘 ∈ ℕ → (𝐴 ∈ ℂ → (((𝐴𝑘) = 0 ↔ 𝐴 = 0) → ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0))))
3534a2d 29 . . 3 (𝑘 ∈ ℕ → ((𝐴 ∈ ℂ → ((𝐴𝑘) = 0 ↔ 𝐴 = 0)) → (𝐴 ∈ ℂ → ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0))))
364, 8, 12, 16, 18, 35nnind 12266 . 2 (𝑁 ∈ ℕ → (𝐴 ∈ ℂ → ((𝐴𝑁) = 0 ↔ 𝐴 = 0)))
3736impcom 406 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) = 0 ↔ 𝐴 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  (class class class)co 7424  cc 11142  0cc0 11144  1c1 11145   + caddc 11147   · cmul 11149  cn 12248  0cn0 12508  cexp 14064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-nn 12249  df-n0 12509  df-z 12595  df-uz 12859  df-seq 14005  df-exp 14065
This theorem is referenced by:  expne0  14096  0exp  14100  sqeq0  14122  expeq0d  14144  rpexp  16699  dvdsexpnn0  41904  dffltz  42061
  Copyright terms: Public domain W3C validator