MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expeq0 Structured version   Visualization version   GIF version

Theorem expeq0 13813
Description: Positive integer exponentiation is 0 iff its base is 0. (Contributed by NM, 23-Feb-2005.)
Assertion
Ref Expression
expeq0 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) = 0 ↔ 𝐴 = 0))

Proof of Theorem expeq0
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7283 . . . . . 6 (𝑗 = 1 → (𝐴𝑗) = (𝐴↑1))
21eqeq1d 2740 . . . . 5 (𝑗 = 1 → ((𝐴𝑗) = 0 ↔ (𝐴↑1) = 0))
32bibi1d 344 . . . 4 (𝑗 = 1 → (((𝐴𝑗) = 0 ↔ 𝐴 = 0) ↔ ((𝐴↑1) = 0 ↔ 𝐴 = 0)))
43imbi2d 341 . . 3 (𝑗 = 1 → ((𝐴 ∈ ℂ → ((𝐴𝑗) = 0 ↔ 𝐴 = 0)) ↔ (𝐴 ∈ ℂ → ((𝐴↑1) = 0 ↔ 𝐴 = 0))))
5 oveq2 7283 . . . . . 6 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
65eqeq1d 2740 . . . . 5 (𝑗 = 𝑘 → ((𝐴𝑗) = 0 ↔ (𝐴𝑘) = 0))
76bibi1d 344 . . . 4 (𝑗 = 𝑘 → (((𝐴𝑗) = 0 ↔ 𝐴 = 0) ↔ ((𝐴𝑘) = 0 ↔ 𝐴 = 0)))
87imbi2d 341 . . 3 (𝑗 = 𝑘 → ((𝐴 ∈ ℂ → ((𝐴𝑗) = 0 ↔ 𝐴 = 0)) ↔ (𝐴 ∈ ℂ → ((𝐴𝑘) = 0 ↔ 𝐴 = 0))))
9 oveq2 7283 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
109eqeq1d 2740 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝐴𝑗) = 0 ↔ (𝐴↑(𝑘 + 1)) = 0))
1110bibi1d 344 . . . 4 (𝑗 = (𝑘 + 1) → (((𝐴𝑗) = 0 ↔ 𝐴 = 0) ↔ ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0)))
1211imbi2d 341 . . 3 (𝑗 = (𝑘 + 1) → ((𝐴 ∈ ℂ → ((𝐴𝑗) = 0 ↔ 𝐴 = 0)) ↔ (𝐴 ∈ ℂ → ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0))))
13 oveq2 7283 . . . . . 6 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
1413eqeq1d 2740 . . . . 5 (𝑗 = 𝑁 → ((𝐴𝑗) = 0 ↔ (𝐴𝑁) = 0))
1514bibi1d 344 . . . 4 (𝑗 = 𝑁 → (((𝐴𝑗) = 0 ↔ 𝐴 = 0) ↔ ((𝐴𝑁) = 0 ↔ 𝐴 = 0)))
1615imbi2d 341 . . 3 (𝑗 = 𝑁 → ((𝐴 ∈ ℂ → ((𝐴𝑗) = 0 ↔ 𝐴 = 0)) ↔ (𝐴 ∈ ℂ → ((𝐴𝑁) = 0 ↔ 𝐴 = 0))))
17 exp1 13788 . . . 4 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
1817eqeq1d 2740 . . 3 (𝐴 ∈ ℂ → ((𝐴↑1) = 0 ↔ 𝐴 = 0))
19 nnnn0 12240 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
20 expp1 13789 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
2120eqeq1d 2740 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑘 + 1)) = 0 ↔ ((𝐴𝑘) · 𝐴) = 0))
22 expcl 13800 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
23 simpl 483 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
2422, 23mul0ord 11625 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑘) · 𝐴) = 0 ↔ ((𝐴𝑘) = 0 ∨ 𝐴 = 0)))
2521, 24bitrd 278 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑘 + 1)) = 0 ↔ ((𝐴𝑘) = 0 ∨ 𝐴 = 0)))
2619, 25sylan2 593 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((𝐴↑(𝑘 + 1)) = 0 ↔ ((𝐴𝑘) = 0 ∨ 𝐴 = 0)))
27 biimp 214 . . . . . . . . 9 (((𝐴𝑘) = 0 ↔ 𝐴 = 0) → ((𝐴𝑘) = 0 → 𝐴 = 0))
28 idd 24 . . . . . . . . 9 (((𝐴𝑘) = 0 ↔ 𝐴 = 0) → (𝐴 = 0 → 𝐴 = 0))
2927, 28jaod 856 . . . . . . . 8 (((𝐴𝑘) = 0 ↔ 𝐴 = 0) → (((𝐴𝑘) = 0 ∨ 𝐴 = 0) → 𝐴 = 0))
30 olc 865 . . . . . . . 8 (𝐴 = 0 → ((𝐴𝑘) = 0 ∨ 𝐴 = 0))
3129, 30impbid1 224 . . . . . . 7 (((𝐴𝑘) = 0 ↔ 𝐴 = 0) → (((𝐴𝑘) = 0 ∨ 𝐴 = 0) ↔ 𝐴 = 0))
3226, 31sylan9bb 510 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) ∧ ((𝐴𝑘) = 0 ↔ 𝐴 = 0)) → ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0))
3332exp31 420 . . . . 5 (𝐴 ∈ ℂ → (𝑘 ∈ ℕ → (((𝐴𝑘) = 0 ↔ 𝐴 = 0) → ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0))))
3433com12 32 . . . 4 (𝑘 ∈ ℕ → (𝐴 ∈ ℂ → (((𝐴𝑘) = 0 ↔ 𝐴 = 0) → ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0))))
3534a2d 29 . . 3 (𝑘 ∈ ℕ → ((𝐴 ∈ ℂ → ((𝐴𝑘) = 0 ↔ 𝐴 = 0)) → (𝐴 ∈ ℂ → ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0))))
364, 8, 12, 16, 18, 35nnind 11991 . 2 (𝑁 ∈ ℕ → (𝐴 ∈ ℂ → ((𝐴𝑁) = 0 ↔ 𝐴 = 0)))
3736impcom 408 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) = 0 ↔ 𝐴 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cn 11973  0cn0 12233  cexp 13782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-seq 13722  df-exp 13783
This theorem is referenced by:  expne0  13814  0exp  13818  sqeq0  13840  expeq0d  13860  rpexp  16427  dvdsexpnn0  40341  dffltz  40471
  Copyright terms: Public domain W3C validator