MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expeq0 Structured version   Visualization version   GIF version

Theorem expeq0 13455
Description: Positive integer exponentiation is 0 iff its mantissa is 0. (Contributed by NM, 23-Feb-2005.)
Assertion
Ref Expression
expeq0 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) = 0 ↔ 𝐴 = 0))

Proof of Theorem expeq0
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7143 . . . . . 6 (𝑗 = 1 → (𝐴𝑗) = (𝐴↑1))
21eqeq1d 2800 . . . . 5 (𝑗 = 1 → ((𝐴𝑗) = 0 ↔ (𝐴↑1) = 0))
32bibi1d 347 . . . 4 (𝑗 = 1 → (((𝐴𝑗) = 0 ↔ 𝐴 = 0) ↔ ((𝐴↑1) = 0 ↔ 𝐴 = 0)))
43imbi2d 344 . . 3 (𝑗 = 1 → ((𝐴 ∈ ℂ → ((𝐴𝑗) = 0 ↔ 𝐴 = 0)) ↔ (𝐴 ∈ ℂ → ((𝐴↑1) = 0 ↔ 𝐴 = 0))))
5 oveq2 7143 . . . . . 6 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
65eqeq1d 2800 . . . . 5 (𝑗 = 𝑘 → ((𝐴𝑗) = 0 ↔ (𝐴𝑘) = 0))
76bibi1d 347 . . . 4 (𝑗 = 𝑘 → (((𝐴𝑗) = 0 ↔ 𝐴 = 0) ↔ ((𝐴𝑘) = 0 ↔ 𝐴 = 0)))
87imbi2d 344 . . 3 (𝑗 = 𝑘 → ((𝐴 ∈ ℂ → ((𝐴𝑗) = 0 ↔ 𝐴 = 0)) ↔ (𝐴 ∈ ℂ → ((𝐴𝑘) = 0 ↔ 𝐴 = 0))))
9 oveq2 7143 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
109eqeq1d 2800 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝐴𝑗) = 0 ↔ (𝐴↑(𝑘 + 1)) = 0))
1110bibi1d 347 . . . 4 (𝑗 = (𝑘 + 1) → (((𝐴𝑗) = 0 ↔ 𝐴 = 0) ↔ ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0)))
1211imbi2d 344 . . 3 (𝑗 = (𝑘 + 1) → ((𝐴 ∈ ℂ → ((𝐴𝑗) = 0 ↔ 𝐴 = 0)) ↔ (𝐴 ∈ ℂ → ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0))))
13 oveq2 7143 . . . . . 6 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
1413eqeq1d 2800 . . . . 5 (𝑗 = 𝑁 → ((𝐴𝑗) = 0 ↔ (𝐴𝑁) = 0))
1514bibi1d 347 . . . 4 (𝑗 = 𝑁 → (((𝐴𝑗) = 0 ↔ 𝐴 = 0) ↔ ((𝐴𝑁) = 0 ↔ 𝐴 = 0)))
1615imbi2d 344 . . 3 (𝑗 = 𝑁 → ((𝐴 ∈ ℂ → ((𝐴𝑗) = 0 ↔ 𝐴 = 0)) ↔ (𝐴 ∈ ℂ → ((𝐴𝑁) = 0 ↔ 𝐴 = 0))))
17 exp1 13431 . . . 4 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
1817eqeq1d 2800 . . 3 (𝐴 ∈ ℂ → ((𝐴↑1) = 0 ↔ 𝐴 = 0))
19 nnnn0 11892 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
20 expp1 13432 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
2120eqeq1d 2800 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑘 + 1)) = 0 ↔ ((𝐴𝑘) · 𝐴) = 0))
22 expcl 13443 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
23 simpl 486 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
2422, 23mul0ord 11279 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑘) · 𝐴) = 0 ↔ ((𝐴𝑘) = 0 ∨ 𝐴 = 0)))
2521, 24bitrd 282 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑘 + 1)) = 0 ↔ ((𝐴𝑘) = 0 ∨ 𝐴 = 0)))
2619, 25sylan2 595 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((𝐴↑(𝑘 + 1)) = 0 ↔ ((𝐴𝑘) = 0 ∨ 𝐴 = 0)))
27 biimp 218 . . . . . . . . 9 (((𝐴𝑘) = 0 ↔ 𝐴 = 0) → ((𝐴𝑘) = 0 → 𝐴 = 0))
28 idd 24 . . . . . . . . 9 (((𝐴𝑘) = 0 ↔ 𝐴 = 0) → (𝐴 = 0 → 𝐴 = 0))
2927, 28jaod 856 . . . . . . . 8 (((𝐴𝑘) = 0 ↔ 𝐴 = 0) → (((𝐴𝑘) = 0 ∨ 𝐴 = 0) → 𝐴 = 0))
30 olc 865 . . . . . . . 8 (𝐴 = 0 → ((𝐴𝑘) = 0 ∨ 𝐴 = 0))
3129, 30impbid1 228 . . . . . . 7 (((𝐴𝑘) = 0 ↔ 𝐴 = 0) → (((𝐴𝑘) = 0 ∨ 𝐴 = 0) ↔ 𝐴 = 0))
3226, 31sylan9bb 513 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) ∧ ((𝐴𝑘) = 0 ↔ 𝐴 = 0)) → ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0))
3332exp31 423 . . . . 5 (𝐴 ∈ ℂ → (𝑘 ∈ ℕ → (((𝐴𝑘) = 0 ↔ 𝐴 = 0) → ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0))))
3433com12 32 . . . 4 (𝑘 ∈ ℕ → (𝐴 ∈ ℂ → (((𝐴𝑘) = 0 ↔ 𝐴 = 0) → ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0))))
3534a2d 29 . . 3 (𝑘 ∈ ℕ → ((𝐴 ∈ ℂ → ((𝐴𝑘) = 0 ↔ 𝐴 = 0)) → (𝐴 ∈ ℂ → ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0))))
364, 8, 12, 16, 18, 35nnind 11643 . 2 (𝑁 ∈ ℕ → (𝐴 ∈ ℂ → ((𝐴𝑁) = 0 ↔ 𝐴 = 0)))
3736impcom 411 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) = 0 ↔ 𝐴 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  (class class class)co 7135  cc 10524  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  cn 11625  0cn0 11885  cexp 13425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-seq 13365  df-exp 13426
This theorem is referenced by:  expne0  13456  0exp  13460  sqeq0  13482  expeq0d  13502  rpexp  16054  dffltz  39615
  Copyright terms: Public domain W3C validator