| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 7439 |
. . . . . 6
⊢ (𝑗 = 1 → (𝐴↑𝑗) = (𝐴↑1)) |
| 2 | 1 | eqeq1d 2739 |
. . . . 5
⊢ (𝑗 = 1 → ((𝐴↑𝑗) = 0 ↔ (𝐴↑1) = 0)) |
| 3 | 2 | bibi1d 343 |
. . . 4
⊢ (𝑗 = 1 → (((𝐴↑𝑗) = 0 ↔ 𝐴 = 0) ↔ ((𝐴↑1) = 0 ↔ 𝐴 = 0))) |
| 4 | 3 | imbi2d 340 |
. . 3
⊢ (𝑗 = 1 → ((𝐴 ∈ ℂ → ((𝐴↑𝑗) = 0 ↔ 𝐴 = 0)) ↔ (𝐴 ∈ ℂ → ((𝐴↑1) = 0 ↔ 𝐴 = 0)))) |
| 5 | | oveq2 7439 |
. . . . . 6
⊢ (𝑗 = 𝑘 → (𝐴↑𝑗) = (𝐴↑𝑘)) |
| 6 | 5 | eqeq1d 2739 |
. . . . 5
⊢ (𝑗 = 𝑘 → ((𝐴↑𝑗) = 0 ↔ (𝐴↑𝑘) = 0)) |
| 7 | 6 | bibi1d 343 |
. . . 4
⊢ (𝑗 = 𝑘 → (((𝐴↑𝑗) = 0 ↔ 𝐴 = 0) ↔ ((𝐴↑𝑘) = 0 ↔ 𝐴 = 0))) |
| 8 | 7 | imbi2d 340 |
. . 3
⊢ (𝑗 = 𝑘 → ((𝐴 ∈ ℂ → ((𝐴↑𝑗) = 0 ↔ 𝐴 = 0)) ↔ (𝐴 ∈ ℂ → ((𝐴↑𝑘) = 0 ↔ 𝐴 = 0)))) |
| 9 | | oveq2 7439 |
. . . . . 6
⊢ (𝑗 = (𝑘 + 1) → (𝐴↑𝑗) = (𝐴↑(𝑘 + 1))) |
| 10 | 9 | eqeq1d 2739 |
. . . . 5
⊢ (𝑗 = (𝑘 + 1) → ((𝐴↑𝑗) = 0 ↔ (𝐴↑(𝑘 + 1)) = 0)) |
| 11 | 10 | bibi1d 343 |
. . . 4
⊢ (𝑗 = (𝑘 + 1) → (((𝐴↑𝑗) = 0 ↔ 𝐴 = 0) ↔ ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0))) |
| 12 | 11 | imbi2d 340 |
. . 3
⊢ (𝑗 = (𝑘 + 1) → ((𝐴 ∈ ℂ → ((𝐴↑𝑗) = 0 ↔ 𝐴 = 0)) ↔ (𝐴 ∈ ℂ → ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0)))) |
| 13 | | oveq2 7439 |
. . . . . 6
⊢ (𝑗 = 𝑁 → (𝐴↑𝑗) = (𝐴↑𝑁)) |
| 14 | 13 | eqeq1d 2739 |
. . . . 5
⊢ (𝑗 = 𝑁 → ((𝐴↑𝑗) = 0 ↔ (𝐴↑𝑁) = 0)) |
| 15 | 14 | bibi1d 343 |
. . . 4
⊢ (𝑗 = 𝑁 → (((𝐴↑𝑗) = 0 ↔ 𝐴 = 0) ↔ ((𝐴↑𝑁) = 0 ↔ 𝐴 = 0))) |
| 16 | 15 | imbi2d 340 |
. . 3
⊢ (𝑗 = 𝑁 → ((𝐴 ∈ ℂ → ((𝐴↑𝑗) = 0 ↔ 𝐴 = 0)) ↔ (𝐴 ∈ ℂ → ((𝐴↑𝑁) = 0 ↔ 𝐴 = 0)))) |
| 17 | | exp1 14108 |
. . . 4
⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) |
| 18 | 17 | eqeq1d 2739 |
. . 3
⊢ (𝐴 ∈ ℂ → ((𝐴↑1) = 0 ↔ 𝐴 = 0)) |
| 19 | | nnnn0 12533 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) |
| 20 | | expp1 14109 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑(𝑘 + 1)) = ((𝐴↑𝑘) · 𝐴)) |
| 21 | 20 | eqeq1d 2739 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝐴↑(𝑘 + 1)) = 0 ↔ ((𝐴↑𝑘) · 𝐴) = 0)) |
| 22 | | expcl 14120 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑𝑘) ∈
ℂ) |
| 23 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ 𝐴 ∈
ℂ) |
| 24 | 22, 23 | mul0ord 11913 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (((𝐴↑𝑘) · 𝐴) = 0 ↔ ((𝐴↑𝑘) = 0 ∨ 𝐴 = 0))) |
| 25 | 21, 24 | bitrd 279 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝐴↑(𝑘 + 1)) = 0 ↔ ((𝐴↑𝑘) = 0 ∨ 𝐴 = 0))) |
| 26 | 19, 25 | sylan2 593 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((𝐴↑(𝑘 + 1)) = 0 ↔ ((𝐴↑𝑘) = 0 ∨ 𝐴 = 0))) |
| 27 | | biimp 215 |
. . . . . . . . 9
⊢ (((𝐴↑𝑘) = 0 ↔ 𝐴 = 0) → ((𝐴↑𝑘) = 0 → 𝐴 = 0)) |
| 28 | | idd 24 |
. . . . . . . . 9
⊢ (((𝐴↑𝑘) = 0 ↔ 𝐴 = 0) → (𝐴 = 0 → 𝐴 = 0)) |
| 29 | 27, 28 | jaod 860 |
. . . . . . . 8
⊢ (((𝐴↑𝑘) = 0 ↔ 𝐴 = 0) → (((𝐴↑𝑘) = 0 ∨ 𝐴 = 0) → 𝐴 = 0)) |
| 30 | | olc 869 |
. . . . . . . 8
⊢ (𝐴 = 0 → ((𝐴↑𝑘) = 0 ∨ 𝐴 = 0)) |
| 31 | 29, 30 | impbid1 225 |
. . . . . . 7
⊢ (((𝐴↑𝑘) = 0 ↔ 𝐴 = 0) → (((𝐴↑𝑘) = 0 ∨ 𝐴 = 0) ↔ 𝐴 = 0)) |
| 32 | 26, 31 | sylan9bb 509 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) ∧ ((𝐴↑𝑘) = 0 ↔ 𝐴 = 0)) → ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0)) |
| 33 | 32 | exp31 419 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (𝑘 ∈ ℕ → (((𝐴↑𝑘) = 0 ↔ 𝐴 = 0) → ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0)))) |
| 34 | 33 | com12 32 |
. . . 4
⊢ (𝑘 ∈ ℕ → (𝐴 ∈ ℂ → (((𝐴↑𝑘) = 0 ↔ 𝐴 = 0) → ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0)))) |
| 35 | 34 | a2d 29 |
. . 3
⊢ (𝑘 ∈ ℕ → ((𝐴 ∈ ℂ → ((𝐴↑𝑘) = 0 ↔ 𝐴 = 0)) → (𝐴 ∈ ℂ → ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0)))) |
| 36 | 4, 8, 12, 16, 18, 35 | nnind 12284 |
. 2
⊢ (𝑁 ∈ ℕ → (𝐴 ∈ ℂ → ((𝐴↑𝑁) = 0 ↔ 𝐴 = 0))) |
| 37 | 36 | impcom 407 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑁) = 0 ↔ 𝐴 = 0)) |