MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expeq0 Structured version   Visualization version   GIF version

Theorem expeq0 14064
Description: A positive integer power is zero if and only if its base is zero. (Contributed by NM, 23-Feb-2005.)
Assertion
Ref Expression
expeq0 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) = 0 ↔ 𝐴 = 0))

Proof of Theorem expeq0
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7398 . . . . . 6 (𝑗 = 1 → (𝐴𝑗) = (𝐴↑1))
21eqeq1d 2732 . . . . 5 (𝑗 = 1 → ((𝐴𝑗) = 0 ↔ (𝐴↑1) = 0))
32bibi1d 343 . . . 4 (𝑗 = 1 → (((𝐴𝑗) = 0 ↔ 𝐴 = 0) ↔ ((𝐴↑1) = 0 ↔ 𝐴 = 0)))
43imbi2d 340 . . 3 (𝑗 = 1 → ((𝐴 ∈ ℂ → ((𝐴𝑗) = 0 ↔ 𝐴 = 0)) ↔ (𝐴 ∈ ℂ → ((𝐴↑1) = 0 ↔ 𝐴 = 0))))
5 oveq2 7398 . . . . . 6 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
65eqeq1d 2732 . . . . 5 (𝑗 = 𝑘 → ((𝐴𝑗) = 0 ↔ (𝐴𝑘) = 0))
76bibi1d 343 . . . 4 (𝑗 = 𝑘 → (((𝐴𝑗) = 0 ↔ 𝐴 = 0) ↔ ((𝐴𝑘) = 0 ↔ 𝐴 = 0)))
87imbi2d 340 . . 3 (𝑗 = 𝑘 → ((𝐴 ∈ ℂ → ((𝐴𝑗) = 0 ↔ 𝐴 = 0)) ↔ (𝐴 ∈ ℂ → ((𝐴𝑘) = 0 ↔ 𝐴 = 0))))
9 oveq2 7398 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
109eqeq1d 2732 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝐴𝑗) = 0 ↔ (𝐴↑(𝑘 + 1)) = 0))
1110bibi1d 343 . . . 4 (𝑗 = (𝑘 + 1) → (((𝐴𝑗) = 0 ↔ 𝐴 = 0) ↔ ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0)))
1211imbi2d 340 . . 3 (𝑗 = (𝑘 + 1) → ((𝐴 ∈ ℂ → ((𝐴𝑗) = 0 ↔ 𝐴 = 0)) ↔ (𝐴 ∈ ℂ → ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0))))
13 oveq2 7398 . . . . . 6 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
1413eqeq1d 2732 . . . . 5 (𝑗 = 𝑁 → ((𝐴𝑗) = 0 ↔ (𝐴𝑁) = 0))
1514bibi1d 343 . . . 4 (𝑗 = 𝑁 → (((𝐴𝑗) = 0 ↔ 𝐴 = 0) ↔ ((𝐴𝑁) = 0 ↔ 𝐴 = 0)))
1615imbi2d 340 . . 3 (𝑗 = 𝑁 → ((𝐴 ∈ ℂ → ((𝐴𝑗) = 0 ↔ 𝐴 = 0)) ↔ (𝐴 ∈ ℂ → ((𝐴𝑁) = 0 ↔ 𝐴 = 0))))
17 exp1 14039 . . . 4 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
1817eqeq1d 2732 . . 3 (𝐴 ∈ ℂ → ((𝐴↑1) = 0 ↔ 𝐴 = 0))
19 nnnn0 12456 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
20 expp1 14040 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
2120eqeq1d 2732 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑘 + 1)) = 0 ↔ ((𝐴𝑘) · 𝐴) = 0))
22 expcl 14051 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
23 simpl 482 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
2422, 23mul0ord 11833 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑘) · 𝐴) = 0 ↔ ((𝐴𝑘) = 0 ∨ 𝐴 = 0)))
2521, 24bitrd 279 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑘 + 1)) = 0 ↔ ((𝐴𝑘) = 0 ∨ 𝐴 = 0)))
2619, 25sylan2 593 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((𝐴↑(𝑘 + 1)) = 0 ↔ ((𝐴𝑘) = 0 ∨ 𝐴 = 0)))
27 biimp 215 . . . . . . . . 9 (((𝐴𝑘) = 0 ↔ 𝐴 = 0) → ((𝐴𝑘) = 0 → 𝐴 = 0))
28 idd 24 . . . . . . . . 9 (((𝐴𝑘) = 0 ↔ 𝐴 = 0) → (𝐴 = 0 → 𝐴 = 0))
2927, 28jaod 859 . . . . . . . 8 (((𝐴𝑘) = 0 ↔ 𝐴 = 0) → (((𝐴𝑘) = 0 ∨ 𝐴 = 0) → 𝐴 = 0))
30 olc 868 . . . . . . . 8 (𝐴 = 0 → ((𝐴𝑘) = 0 ∨ 𝐴 = 0))
3129, 30impbid1 225 . . . . . . 7 (((𝐴𝑘) = 0 ↔ 𝐴 = 0) → (((𝐴𝑘) = 0 ∨ 𝐴 = 0) ↔ 𝐴 = 0))
3226, 31sylan9bb 509 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) ∧ ((𝐴𝑘) = 0 ↔ 𝐴 = 0)) → ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0))
3332exp31 419 . . . . 5 (𝐴 ∈ ℂ → (𝑘 ∈ ℕ → (((𝐴𝑘) = 0 ↔ 𝐴 = 0) → ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0))))
3433com12 32 . . . 4 (𝑘 ∈ ℕ → (𝐴 ∈ ℂ → (((𝐴𝑘) = 0 ↔ 𝐴 = 0) → ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0))))
3534a2d 29 . . 3 (𝑘 ∈ ℕ → ((𝐴 ∈ ℂ → ((𝐴𝑘) = 0 ↔ 𝐴 = 0)) → (𝐴 ∈ ℂ → ((𝐴↑(𝑘 + 1)) = 0 ↔ 𝐴 = 0))))
364, 8, 12, 16, 18, 35nnind 12211 . 2 (𝑁 ∈ ℕ → (𝐴 ∈ ℂ → ((𝐴𝑁) = 0 ↔ 𝐴 = 0)))
3736impcom 407 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) = 0 ↔ 𝐴 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  cn 12193  0cn0 12449  cexp 14033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-seq 13974  df-exp 14034
This theorem is referenced by:  expne0  14065  0exp  14069  sqeq0  14092  expeq0d  14114  rpexp  16699  dvdsexpnn0  42329  dffltz  42629
  Copyright terms: Public domain W3C validator