MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnof Structured version   Visualization version   GIF version

Theorem lnof 30691
Description: A linear operator is a mapping. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 18-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnof.1 𝑋 = (BaseSet‘𝑈)
lnof.2 𝑌 = (BaseSet‘𝑊)
lnof.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
lnof ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋𝑌)

Proof of Theorem lnof
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnof.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 lnof.2 . . . 4 𝑌 = (BaseSet‘𝑊)
3 eqid 2730 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
4 eqid 2730 . . . 4 ( +𝑣𝑊) = ( +𝑣𝑊)
5 eqid 2730 . . . 4 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
6 eqid 2730 . . . 4 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
7 lnof.7 . . . 4 𝐿 = (𝑈 LnOp 𝑊)
81, 2, 3, 4, 5, 6, 7islno 30689 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐿 ↔ (𝑇:𝑋𝑌 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑇‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = ((𝑥( ·𝑠OLD𝑊)(𝑇𝑦))( +𝑣𝑊)(𝑇𝑧)))))
98simprbda 498 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑇𝐿) → 𝑇:𝑋𝑌)
1093impa 1109 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  NrmCVeccnv 30520   +𝑣 cpv 30521  BaseSetcba 30522   ·𝑠OLD cns 30523   LnOp clno 30676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-lno 30680
This theorem is referenced by:  lno0  30692  lnocoi  30693  lnoadd  30694  lnosub  30695  lnomul  30696  isblo2  30719  blof  30721  nmlno0lem  30729  nmlnoubi  30732  nmlnogt0  30733  lnon0  30734  isblo3i  30737  blocnilem  30740  blocni  30741  htthlem  30853
  Copyright terms: Public domain W3C validator