![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lnof | Structured version Visualization version GIF version |
Description: A linear operator is a mapping. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 18-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnof.1 | β’ π = (BaseSetβπ) |
lnof.2 | β’ π = (BaseSetβπ) |
lnof.7 | β’ πΏ = (π LnOp π) |
Ref | Expression |
---|---|
lnof | β’ ((π β NrmCVec β§ π β NrmCVec β§ π β πΏ) β π:πβΆπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnof.1 | . . . 4 β’ π = (BaseSetβπ) | |
2 | lnof.2 | . . . 4 β’ π = (BaseSetβπ) | |
3 | eqid 2733 | . . . 4 β’ ( +π£ βπ) = ( +π£ βπ) | |
4 | eqid 2733 | . . . 4 β’ ( +π£ βπ) = ( +π£ βπ) | |
5 | eqid 2733 | . . . 4 β’ ( Β·π OLD βπ) = ( Β·π OLD βπ) | |
6 | eqid 2733 | . . . 4 β’ ( Β·π OLD βπ) = ( Β·π OLD βπ) | |
7 | lnof.7 | . . . 4 β’ πΏ = (π LnOp π) | |
8 | 1, 2, 3, 4, 5, 6, 7 | islno 30006 | . . 3 β’ ((π β NrmCVec β§ π β NrmCVec) β (π β πΏ β (π:πβΆπ β§ βπ₯ β β βπ¦ β π βπ§ β π (πβ((π₯( Β·π OLD βπ)π¦)( +π£ βπ)π§)) = ((π₯( Β·π OLD βπ)(πβπ¦))( +π£ βπ)(πβπ§))))) |
9 | 8 | simprbda 500 | . 2 β’ (((π β NrmCVec β§ π β NrmCVec) β§ π β πΏ) β π:πβΆπ) |
10 | 9 | 3impa 1111 | 1 β’ ((π β NrmCVec β§ π β NrmCVec β§ π β πΏ) β π:πβΆπ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 βwral 3062 βΆwf 6540 βcfv 6544 (class class class)co 7409 βcc 11108 NrmCVeccnv 29837 +π£ cpv 29838 BaseSetcba 29839 Β·π OLD cns 29840 LnOp clno 29993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-map 8822 df-lno 29997 |
This theorem is referenced by: lno0 30009 lnocoi 30010 lnoadd 30011 lnosub 30012 lnomul 30013 isblo2 30036 blof 30038 nmlno0lem 30046 nmlnoubi 30049 nmlnogt0 30050 lnon0 30051 isblo3i 30054 blocnilem 30057 blocni 30058 htthlem 30170 |
Copyright terms: Public domain | W3C validator |