Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lnof | Structured version Visualization version GIF version |
Description: A linear operator is a mapping. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 18-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnof.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
lnof.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
lnof.7 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
Ref | Expression |
---|---|
lnof | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇:𝑋⟶𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnof.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | lnof.2 | . . . 4 ⊢ 𝑌 = (BaseSet‘𝑊) | |
3 | eqid 2739 | . . . 4 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
4 | eqid 2739 | . . . 4 ⊢ ( +𝑣 ‘𝑊) = ( +𝑣 ‘𝑊) | |
5 | eqid 2739 | . . . 4 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
6 | eqid 2739 | . . . 4 ⊢ ( ·𝑠OLD ‘𝑊) = ( ·𝑠OLD ‘𝑊) | |
7 | lnof.7 | . . . 4 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
8 | 1, 2, 3, 4, 5, 6, 7 | islno 29094 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇 ∈ 𝐿 ↔ (𝑇:𝑋⟶𝑌 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑇‘((𝑥( ·𝑠OLD ‘𝑈)𝑦)( +𝑣 ‘𝑈)𝑧)) = ((𝑥( ·𝑠OLD ‘𝑊)(𝑇‘𝑦))( +𝑣 ‘𝑊)(𝑇‘𝑧))))) |
9 | 8 | simprbda 498 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑇 ∈ 𝐿) → 𝑇:𝑋⟶𝑌) |
10 | 9 | 3impa 1108 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇:𝑋⟶𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ∀wral 3065 ⟶wf 6426 ‘cfv 6430 (class class class)co 7268 ℂcc 10853 NrmCVeccnv 28925 +𝑣 cpv 28926 BaseSetcba 28927 ·𝑠OLD cns 28928 LnOp clno 29081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-map 8591 df-lno 29085 |
This theorem is referenced by: lno0 29097 lnocoi 29098 lnoadd 29099 lnosub 29100 lnomul 29101 isblo2 29124 blof 29126 nmlno0lem 29134 nmlnoubi 29137 nmlnogt0 29138 lnon0 29139 isblo3i 29142 blocnilem 29145 blocni 29146 htthlem 29258 |
Copyright terms: Public domain | W3C validator |