MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnof Structured version   Visualization version   GIF version

Theorem lnof 29096
Description: A linear operator is a mapping. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 18-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnof.1 𝑋 = (BaseSet‘𝑈)
lnof.2 𝑌 = (BaseSet‘𝑊)
lnof.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
lnof ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋𝑌)

Proof of Theorem lnof
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnof.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 lnof.2 . . . 4 𝑌 = (BaseSet‘𝑊)
3 eqid 2739 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
4 eqid 2739 . . . 4 ( +𝑣𝑊) = ( +𝑣𝑊)
5 eqid 2739 . . . 4 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
6 eqid 2739 . . . 4 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
7 lnof.7 . . . 4 𝐿 = (𝑈 LnOp 𝑊)
81, 2, 3, 4, 5, 6, 7islno 29094 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐿 ↔ (𝑇:𝑋𝑌 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑇‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = ((𝑥( ·𝑠OLD𝑊)(𝑇𝑦))( +𝑣𝑊)(𝑇𝑧)))))
98simprbda 498 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑇𝐿) → 𝑇:𝑋𝑌)
1093impa 1108 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1541  wcel 2109  wral 3065  wf 6426  cfv 6430  (class class class)co 7268  cc 10853  NrmCVeccnv 28925   +𝑣 cpv 28926  BaseSetcba 28927   ·𝑠OLD cns 28928   LnOp clno 29081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-map 8591  df-lno 29085
This theorem is referenced by:  lno0  29097  lnocoi  29098  lnoadd  29099  lnosub  29100  lnomul  29101  isblo2  29124  blof  29126  nmlno0lem  29134  nmlnoubi  29137  nmlnogt0  29138  lnon0  29139  isblo3i  29142  blocnilem  29145  blocni  29146  htthlem  29258
  Copyright terms: Public domain W3C validator