MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnof Structured version   Visualization version   GIF version

Theorem lnof 29126
Description: A linear operator is a mapping. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 18-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnof.1 𝑋 = (BaseSet‘𝑈)
lnof.2 𝑌 = (BaseSet‘𝑊)
lnof.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
lnof ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋𝑌)

Proof of Theorem lnof
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnof.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 lnof.2 . . . 4 𝑌 = (BaseSet‘𝑊)
3 eqid 2740 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
4 eqid 2740 . . . 4 ( +𝑣𝑊) = ( +𝑣𝑊)
5 eqid 2740 . . . 4 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
6 eqid 2740 . . . 4 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
7 lnof.7 . . . 4 𝐿 = (𝑈 LnOp 𝑊)
81, 2, 3, 4, 5, 6, 7islno 29124 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐿 ↔ (𝑇:𝑋𝑌 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑇‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = ((𝑥( ·𝑠OLD𝑊)(𝑇𝑦))( +𝑣𝑊)(𝑇𝑧)))))
98simprbda 499 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑇𝐿) → 𝑇:𝑋𝑌)
1093impa 1109 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110  wral 3066  wf 6428  cfv 6432  (class class class)co 7272  cc 10880  NrmCVeccnv 28955   +𝑣 cpv 28956  BaseSetcba 28957   ·𝑠OLD cns 28958   LnOp clno 29111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-fv 6440  df-ov 7275  df-oprab 7276  df-mpo 7277  df-map 8609  df-lno 29115
This theorem is referenced by:  lno0  29127  lnocoi  29128  lnoadd  29129  lnosub  29130  lnomul  29131  isblo2  29154  blof  29156  nmlno0lem  29164  nmlnoubi  29167  nmlnogt0  29168  lnon0  29169  isblo3i  29172  blocnilem  29175  blocni  29176  htthlem  29288
  Copyright terms: Public domain W3C validator