Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lnof | Structured version Visualization version GIF version |
Description: A linear operator is a mapping. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 18-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnof.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
lnof.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
lnof.7 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
Ref | Expression |
---|---|
lnof | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇:𝑋⟶𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnof.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | lnof.2 | . . . 4 ⊢ 𝑌 = (BaseSet‘𝑊) | |
3 | eqid 2736 | . . . 4 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
4 | eqid 2736 | . . . 4 ⊢ ( +𝑣 ‘𝑊) = ( +𝑣 ‘𝑊) | |
5 | eqid 2736 | . . . 4 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
6 | eqid 2736 | . . . 4 ⊢ ( ·𝑠OLD ‘𝑊) = ( ·𝑠OLD ‘𝑊) | |
7 | lnof.7 | . . . 4 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
8 | 1, 2, 3, 4, 5, 6, 7 | islno 29160 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇 ∈ 𝐿 ↔ (𝑇:𝑋⟶𝑌 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑇‘((𝑥( ·𝑠OLD ‘𝑈)𝑦)( +𝑣 ‘𝑈)𝑧)) = ((𝑥( ·𝑠OLD ‘𝑊)(𝑇‘𝑦))( +𝑣 ‘𝑊)(𝑇‘𝑧))))) |
9 | 8 | simprbda 500 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑇 ∈ 𝐿) → 𝑇:𝑋⟶𝑌) |
10 | 9 | 3impa 1110 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇:𝑋⟶𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ∀wral 3062 ⟶wf 6454 ‘cfv 6458 (class class class)co 7307 ℂcc 10915 NrmCVeccnv 28991 +𝑣 cpv 28992 BaseSetcba 28993 ·𝑠OLD cns 28994 LnOp clno 29147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-sbc 3722 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-map 8648 df-lno 29151 |
This theorem is referenced by: lno0 29163 lnocoi 29164 lnoadd 29165 lnosub 29166 lnomul 29167 isblo2 29190 blof 29192 nmlno0lem 29200 nmlnoubi 29203 nmlnogt0 29204 lnon0 29205 isblo3i 29208 blocnilem 29211 blocni 29212 htthlem 29324 |
Copyright terms: Public domain | W3C validator |