MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnof Structured version   Visualization version   GIF version

Theorem lnof 28524
Description: A linear operator is a mapping. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 18-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnof.1 𝑋 = (BaseSet‘𝑈)
lnof.2 𝑌 = (BaseSet‘𝑊)
lnof.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
lnof ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋𝑌)

Proof of Theorem lnof
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnof.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 lnof.2 . . . 4 𝑌 = (BaseSet‘𝑊)
3 eqid 2819 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
4 eqid 2819 . . . 4 ( +𝑣𝑊) = ( +𝑣𝑊)
5 eqid 2819 . . . 4 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
6 eqid 2819 . . . 4 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
7 lnof.7 . . . 4 𝐿 = (𝑈 LnOp 𝑊)
81, 2, 3, 4, 5, 6, 7islno 28522 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐿 ↔ (𝑇:𝑋𝑌 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑇‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = ((𝑥( ·𝑠OLD𝑊)(𝑇𝑦))( +𝑣𝑊)(𝑇𝑧)))))
98simprbda 501 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑇𝐿) → 𝑇:𝑋𝑌)
1093impa 1105 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082   = wceq 1531  wcel 2108  wral 3136  wf 6344  cfv 6348  (class class class)co 7148  cc 10527  NrmCVeccnv 28353   +𝑣 cpv 28354  BaseSetcba 28355   ·𝑠OLD cns 28356   LnOp clno 28509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-map 8400  df-lno 28513
This theorem is referenced by:  lno0  28525  lnocoi  28526  lnoadd  28527  lnosub  28528  lnomul  28529  isblo2  28552  blof  28554  nmlno0lem  28562  nmlnoubi  28565  nmlnogt0  28566  lnon0  28567  isblo3i  28570  blocnilem  28573  blocni  28574  htthlem  28686
  Copyright terms: Public domain W3C validator