![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lnof | Structured version Visualization version GIF version |
Description: A linear operator is a mapping. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 18-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnof.1 | β’ π = (BaseSetβπ) |
lnof.2 | β’ π = (BaseSetβπ) |
lnof.7 | β’ πΏ = (π LnOp π) |
Ref | Expression |
---|---|
lnof | β’ ((π β NrmCVec β§ π β NrmCVec β§ π β πΏ) β π:πβΆπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnof.1 | . . . 4 β’ π = (BaseSetβπ) | |
2 | lnof.2 | . . . 4 β’ π = (BaseSetβπ) | |
3 | eqid 2733 | . . . 4 β’ ( +π£ βπ) = ( +π£ βπ) | |
4 | eqid 2733 | . . . 4 β’ ( +π£ βπ) = ( +π£ βπ) | |
5 | eqid 2733 | . . . 4 β’ ( Β·π OLD βπ) = ( Β·π OLD βπ) | |
6 | eqid 2733 | . . . 4 β’ ( Β·π OLD βπ) = ( Β·π OLD βπ) | |
7 | lnof.7 | . . . 4 β’ πΏ = (π LnOp π) | |
8 | 1, 2, 3, 4, 5, 6, 7 | islno 29994 | . . 3 β’ ((π β NrmCVec β§ π β NrmCVec) β (π β πΏ β (π:πβΆπ β§ βπ₯ β β βπ¦ β π βπ§ β π (πβ((π₯( Β·π OLD βπ)π¦)( +π£ βπ)π§)) = ((π₯( Β·π OLD βπ)(πβπ¦))( +π£ βπ)(πβπ§))))) |
9 | 8 | simprbda 500 | . 2 β’ (((π β NrmCVec β§ π β NrmCVec) β§ π β πΏ) β π:πβΆπ) |
10 | 9 | 3impa 1111 | 1 β’ ((π β NrmCVec β§ π β NrmCVec β§ π β πΏ) β π:πβΆπ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 βwral 3062 βΆwf 6537 βcfv 6541 (class class class)co 7406 βcc 11105 NrmCVeccnv 29825 +π£ cpv 29826 BaseSetcba 29827 Β·π OLD cns 29828 LnOp clno 29981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-ov 7409 df-oprab 7410 df-mpo 7411 df-map 8819 df-lno 29985 |
This theorem is referenced by: lno0 29997 lnocoi 29998 lnoadd 29999 lnosub 30000 lnomul 30001 isblo2 30024 blof 30026 nmlno0lem 30034 nmlnoubi 30037 nmlnogt0 30038 lnon0 30039 isblo3i 30042 blocnilem 30045 blocni 30046 htthlem 30158 |
Copyright terms: Public domain | W3C validator |