MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  br1steqg Structured version   Visualization version   GIF version

Theorem br1steqg 8036
Description: Uniqueness condition for the binary relation 1st. (Contributed by Scott Fenton, 2-Jul-2020.) Revised to remove sethood hypothesis on 𝐶. (Revised by Peter Mazsa, 17-Jan-2022.)
Assertion
Ref Expression
br1steqg ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩1st 𝐶𝐶 = 𝐴))

Proof of Theorem br1steqg
StepHypRef Expression
1 op1stg 8026 . . 3 ((𝐴𝑉𝐵𝑊) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
21eqeq1d 2739 . 2 ((𝐴𝑉𝐵𝑊) → ((1st ‘⟨𝐴, 𝐵⟩) = 𝐶𝐴 = 𝐶))
3 fo1st 8034 . . . 4 1st :V–onto→V
4 fofn 6822 . . . 4 (1st :V–onto→V → 1st Fn V)
53, 4ax-mp 5 . . 3 1st Fn V
6 opex 5469 . . 3 𝐴, 𝐵⟩ ∈ V
7 fnbrfvb 6959 . . 3 ((1st Fn V ∧ ⟨𝐴, 𝐵⟩ ∈ V) → ((1st ‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨𝐴, 𝐵⟩1st 𝐶))
85, 6, 7mp2an 692 . 2 ((1st ‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨𝐴, 𝐵⟩1st 𝐶)
9 eqcom 2744 . 2 (𝐴 = 𝐶𝐶 = 𝐴)
102, 8, 93bitr3g 313 1 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩1st 𝐶𝐶 = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  cop 4632   class class class wbr 5143   Fn wfn 6556  ontowfo 6559  cfv 6561  1st c1st 8012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fo 6567  df-fv 6569  df-1st 8014
This theorem is referenced by:  br1steq  35771  fv1stcnv  35777  brxrn  38375
  Copyright terms: Public domain W3C validator