![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > br1steqg | Structured version Visualization version GIF version |
Description: Uniqueness condition for the binary relation 1st. (Contributed by Scott Fenton, 2-Jul-2020.) Revised to remove sethood hypothesis on š¶. (Revised by Peter Mazsa, 17-Jan-2022.) |
Ref | Expression |
---|---|
br1steqg | ⢠((š“ ā š ā§ šµ ā š) ā (āØš“, šµā©1st š¶ ā š¶ = š“)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | op1stg 7980 | . . 3 ⢠((š“ ā š ā§ šµ ā š) ā (1st āāØš“, šµā©) = š“) | |
2 | 1 | eqeq1d 2726 | . 2 ⢠((š“ ā š ā§ šµ ā š) ā ((1st āāØš“, šµā©) = š¶ ā š“ = š¶)) |
3 | fo1st 7988 | . . . 4 ⢠1st :VāontoāV | |
4 | fofn 6797 | . . . 4 ⢠(1st :VāontoāV ā 1st Fn V) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⢠1st Fn V |
6 | opex 5454 | . . 3 ā¢ āØš“, šµā© ā V | |
7 | fnbrfvb 6934 | . . 3 ⢠((1st Fn V ā§ āØš“, šµā© ā V) ā ((1st āāØš“, šµā©) = š¶ ā āØš“, šµā©1st š¶)) | |
8 | 5, 6, 7 | mp2an 689 | . 2 ⢠((1st āāØš“, šµā©) = š¶ ā āØš“, šµā©1st š¶) |
9 | eqcom 2731 | . 2 ⢠(š“ = š¶ ā š¶ = š“) | |
10 | 2, 8, 9 | 3bitr3g 313 | 1 ⢠((š“ ā š ā§ šµ ā š) ā (āØš“, šµā©1st š¶ ā š¶ = š“)) |
Colors of variables: wff setvar class |
Syntax hints: ā wi 4 ā wb 205 ā§ wa 395 = wceq 1533 ā wcel 2098 Vcvv 3466 āØcop 4626 class class class wbr 5138 Fn wfn 6528 āontoāwfo 6531 ācfv 6533 1st c1st 7966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-fo 6539 df-fv 6541 df-1st 7968 |
This theorem is referenced by: br1steq 35203 fv1stcnv 35209 brxrn 37700 |
Copyright terms: Public domain | W3C validator |