Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > br1steqg | Structured version Visualization version GIF version |
Description: Uniqueness condition for the binary relation 1st. (Contributed by Scott Fenton, 2-Jul-2020.) Revised to remove sethood hypothesis on 𝐶. (Revised by Peter Mazsa, 17-Jan-2022.) |
Ref | Expression |
---|---|
br1steqg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉1st 𝐶 ↔ 𝐶 = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | op1stg 7738 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) | |
2 | 1 | eqeq1d 2741 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((1st ‘〈𝐴, 𝐵〉) = 𝐶 ↔ 𝐴 = 𝐶)) |
3 | fo1st 7746 | . . . 4 ⊢ 1st :V–onto→V | |
4 | fofn 6604 | . . . 4 ⊢ (1st :V–onto→V → 1st Fn V) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ 1st Fn V |
6 | opex 5332 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
7 | fnbrfvb 6734 | . . 3 ⊢ ((1st Fn V ∧ 〈𝐴, 𝐵〉 ∈ V) → ((1st ‘〈𝐴, 𝐵〉) = 𝐶 ↔ 〈𝐴, 𝐵〉1st 𝐶)) | |
8 | 5, 6, 7 | mp2an 692 | . 2 ⊢ ((1st ‘〈𝐴, 𝐵〉) = 𝐶 ↔ 〈𝐴, 𝐵〉1st 𝐶) |
9 | eqcom 2746 | . 2 ⊢ (𝐴 = 𝐶 ↔ 𝐶 = 𝐴) | |
10 | 2, 8, 9 | 3bitr3g 316 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉1st 𝐶 ↔ 𝐶 = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 Vcvv 3400 〈cop 4532 class class class wbr 5040 Fn wfn 6344 –onto→wfo 6347 ‘cfv 6349 1st c1st 7724 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pr 5306 ax-un 7491 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3402 df-sbc 3686 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-br 5041 df-opab 5103 df-mpt 5121 df-id 5439 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-fo 6355 df-fv 6357 df-1st 7726 |
This theorem is referenced by: br1steq 33331 fv1stcnv 33337 brxrn 36159 |
Copyright terms: Public domain | W3C validator |