![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > br1steqg | Structured version Visualization version GIF version |
Description: Uniqueness condition for the binary relation 1st. (Contributed by Scott Fenton, 2-Jul-2020.) Revised to remove sethood hypothesis on 𝐶. (Revised by Peter Mazsa, 17-Jan-2022.) |
Ref | Expression |
---|---|
br1steqg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉1st 𝐶 ↔ 𝐶 = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | op1stg 8042 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) | |
2 | 1 | eqeq1d 2742 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((1st ‘〈𝐴, 𝐵〉) = 𝐶 ↔ 𝐴 = 𝐶)) |
3 | fo1st 8050 | . . . 4 ⊢ 1st :V–onto→V | |
4 | fofn 6836 | . . . 4 ⊢ (1st :V–onto→V → 1st Fn V) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ 1st Fn V |
6 | opex 5484 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
7 | fnbrfvb 6973 | . . 3 ⊢ ((1st Fn V ∧ 〈𝐴, 𝐵〉 ∈ V) → ((1st ‘〈𝐴, 𝐵〉) = 𝐶 ↔ 〈𝐴, 𝐵〉1st 𝐶)) | |
8 | 5, 6, 7 | mp2an 691 | . 2 ⊢ ((1st ‘〈𝐴, 𝐵〉) = 𝐶 ↔ 〈𝐴, 𝐵〉1st 𝐶) |
9 | eqcom 2747 | . 2 ⊢ (𝐴 = 𝐶 ↔ 𝐶 = 𝐴) | |
10 | 2, 8, 9 | 3bitr3g 313 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉1st 𝐶 ↔ 𝐶 = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 〈cop 4654 class class class wbr 5166 Fn wfn 6568 –onto→wfo 6571 ‘cfv 6573 1st c1st 8028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-1st 8030 |
This theorem is referenced by: br1steq 35734 fv1stcnv 35740 brxrn 38330 |
Copyright terms: Public domain | W3C validator |