![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > br1steqg | Structured version Visualization version GIF version |
Description: Uniqueness condition for the binary relation 1st. (Contributed by Scott Fenton, 2-Jul-2020.) Revised to remove sethood hypothesis on 𝐶. (Revised by Peter Mazsa, 17-Jan-2022.) |
Ref | Expression |
---|---|
br1steqg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉1st 𝐶 ↔ 𝐶 = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | op1stg 7991 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) | |
2 | 1 | eqeq1d 2733 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((1st ‘〈𝐴, 𝐵〉) = 𝐶 ↔ 𝐴 = 𝐶)) |
3 | fo1st 7999 | . . . 4 ⊢ 1st :V–onto→V | |
4 | fofn 6807 | . . . 4 ⊢ (1st :V–onto→V → 1st Fn V) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ 1st Fn V |
6 | opex 5464 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
7 | fnbrfvb 6944 | . . 3 ⊢ ((1st Fn V ∧ 〈𝐴, 𝐵〉 ∈ V) → ((1st ‘〈𝐴, 𝐵〉) = 𝐶 ↔ 〈𝐴, 𝐵〉1st 𝐶)) | |
8 | 5, 6, 7 | mp2an 689 | . 2 ⊢ ((1st ‘〈𝐴, 𝐵〉) = 𝐶 ↔ 〈𝐴, 𝐵〉1st 𝐶) |
9 | eqcom 2738 | . 2 ⊢ (𝐴 = 𝐶 ↔ 𝐶 = 𝐴) | |
10 | 2, 8, 9 | 3bitr3g 313 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉1st 𝐶 ↔ 𝐶 = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 Vcvv 3473 〈cop 4634 class class class wbr 5148 Fn wfn 6538 –onto→wfo 6541 ‘cfv 6543 1st c1st 7977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 df-fv 6551 df-1st 7979 |
This theorem is referenced by: br1steq 35212 fv1stcnv 35218 brxrn 37708 |
Copyright terms: Public domain | W3C validator |