MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  br1steqg Structured version   Visualization version   GIF version

Theorem br1steqg 7990
Description: Uniqueness condition for the binary relation 1st. (Contributed by Scott Fenton, 2-Jul-2020.) Revised to remove sethood hypothesis on š¶. (Revised by Peter Mazsa, 17-Jan-2022.)
Assertion
Ref Expression
br1steqg ((š“ ∈ š‘‰ ∧ šµ ∈ š‘Š) → (āŸØš“, šµāŸ©1st š¶ ↔ š¶ = š“))

Proof of Theorem br1steqg
StepHypRef Expression
1 op1stg 7980 . . 3 ((š“ ∈ š‘‰ ∧ šµ ∈ š‘Š) → (1st ā€˜āŸØš“, šµāŸ©) = š“)
21eqeq1d 2726 . 2 ((š“ ∈ š‘‰ ∧ šµ ∈ š‘Š) → ((1st ā€˜āŸØš“, šµāŸ©) = š¶ ↔ š“ = š¶))
3 fo1st 7988 . . . 4 1st :V–onto→V
4 fofn 6797 . . . 4 (1st :V–onto→V → 1st Fn V)
53, 4ax-mp 5 . . 3 1st Fn V
6 opex 5454 . . 3 āŸØš“, šµāŸ© ∈ V
7 fnbrfvb 6934 . . 3 ((1st Fn V ∧ āŸØš“, šµāŸ© ∈ V) → ((1st ā€˜āŸØš“, šµāŸ©) = š¶ ↔ āŸØš“, šµāŸ©1st š¶))
85, 6, 7mp2an 689 . 2 ((1st ā€˜āŸØš“, šµāŸ©) = š¶ ↔ āŸØš“, šµāŸ©1st š¶)
9 eqcom 2731 . 2 (š“ = š¶ ↔ š¶ = š“)
102, 8, 93bitr3g 313 1 ((š“ ∈ š‘‰ ∧ šµ ∈ š‘Š) → (āŸØš“, šµāŸ©1st š¶ ↔ š¶ = š“))
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098  Vcvv 3466  āŸØcop 4626   class class class wbr 5138   Fn wfn 6528  ā€“onto→wfo 6531  ā€˜cfv 6533  1st c1st 7966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-fo 6539  df-fv 6541  df-1st 7968
This theorem is referenced by:  br1steq  35203  fv1stcnv  35209  brxrn  37700
  Copyright terms: Public domain W3C validator