| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > br1steqg | Structured version Visualization version GIF version | ||
| Description: Uniqueness condition for the binary relation 1st. (Contributed by Scott Fenton, 2-Jul-2020.) Revised to remove sethood hypothesis on 𝐶. (Revised by Peter Mazsa, 17-Jan-2022.) |
| Ref | Expression |
|---|---|
| br1steqg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉1st 𝐶 ↔ 𝐶 = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | op1stg 7933 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) | |
| 2 | 1 | eqeq1d 2733 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((1st ‘〈𝐴, 𝐵〉) = 𝐶 ↔ 𝐴 = 𝐶)) |
| 3 | fo1st 7941 | . . . 4 ⊢ 1st :V–onto→V | |
| 4 | fofn 6737 | . . . 4 ⊢ (1st :V–onto→V → 1st Fn V) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ 1st Fn V |
| 6 | opex 5402 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
| 7 | fnbrfvb 6872 | . . 3 ⊢ ((1st Fn V ∧ 〈𝐴, 𝐵〉 ∈ V) → ((1st ‘〈𝐴, 𝐵〉) = 𝐶 ↔ 〈𝐴, 𝐵〉1st 𝐶)) | |
| 8 | 5, 6, 7 | mp2an 692 | . 2 ⊢ ((1st ‘〈𝐴, 𝐵〉) = 𝐶 ↔ 〈𝐴, 𝐵〉1st 𝐶) |
| 9 | eqcom 2738 | . 2 ⊢ (𝐴 = 𝐶 ↔ 𝐶 = 𝐴) | |
| 10 | 2, 8, 9 | 3bitr3g 313 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉1st 𝐶 ↔ 𝐶 = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4579 class class class wbr 5089 Fn wfn 6476 –onto→wfo 6479 ‘cfv 6481 1st c1st 7919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 df-1st 7921 |
| This theorem is referenced by: br1steq 35815 fv1stcnv 35821 brxrn 38406 |
| Copyright terms: Public domain | W3C validator |