MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  br1steqg Structured version   Visualization version   GIF version

Theorem br1steqg 7946
Description: Uniqueness condition for the binary relation 1st. (Contributed by Scott Fenton, 2-Jul-2020.) Revised to remove sethood hypothesis on 𝐶. (Revised by Peter Mazsa, 17-Jan-2022.)
Assertion
Ref Expression
br1steqg ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩1st 𝐶𝐶 = 𝐴))

Proof of Theorem br1steqg
StepHypRef Expression
1 op1stg 7936 . . 3 ((𝐴𝑉𝐵𝑊) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
21eqeq1d 2731 . 2 ((𝐴𝑉𝐵𝑊) → ((1st ‘⟨𝐴, 𝐵⟩) = 𝐶𝐴 = 𝐶))
3 fo1st 7944 . . . 4 1st :V–onto→V
4 fofn 6738 . . . 4 (1st :V–onto→V → 1st Fn V)
53, 4ax-mp 5 . . 3 1st Fn V
6 opex 5407 . . 3 𝐴, 𝐵⟩ ∈ V
7 fnbrfvb 6873 . . 3 ((1st Fn V ∧ ⟨𝐴, 𝐵⟩ ∈ V) → ((1st ‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨𝐴, 𝐵⟩1st 𝐶))
85, 6, 7mp2an 692 . 2 ((1st ‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨𝐴, 𝐵⟩1st 𝐶)
9 eqcom 2736 . 2 (𝐴 = 𝐶𝐶 = 𝐴)
102, 8, 93bitr3g 313 1 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩1st 𝐶𝐶 = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  cop 4583   class class class wbr 5092   Fn wfn 6477  ontowfo 6480  cfv 6482  1st c1st 7922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fo 6488  df-fv 6490  df-1st 7924
This theorem is referenced by:  br1steq  35764  fv1stcnv  35770  brxrn  38362
  Copyright terms: Public domain W3C validator