Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > br2ndeq | Structured version Visualization version GIF version |
Description: Uniqueness condition for the binary relation 2nd. (Contributed by Scott Fenton, 11-Apr-2014.) (Proof shortened by Mario Carneiro, 3-May-2015.) |
Ref | Expression |
---|---|
br1steq.1 | ⊢ 𝐴 ∈ V |
br1steq.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
br2ndeq | ⊢ (〈𝐴, 𝐵〉2nd 𝐶 ↔ 𝐶 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br1steq.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | br1steq.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | br2ndeqg 7927 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (〈𝐴, 𝐵〉2nd 𝐶 ↔ 𝐶 = 𝐵)) | |
4 | 1, 2, 3 | mp2an 690 | 1 ⊢ (〈𝐴, 𝐵〉2nd 𝐶 ↔ 𝐶 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∈ wcel 2106 Vcvv 3442 〈cop 4584 class class class wbr 5097 2nd c2nd 7903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pr 5377 ax-un 7655 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-fo 6490 df-fv 6492 df-2nd 7905 |
This theorem is referenced by: dfrn5 34031 brtxp 34319 brpprod 34324 elfuns 34354 brimg 34376 brcup 34378 brcap 34379 brrestrict 34388 |
Copyright terms: Public domain | W3C validator |