![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > br2ndeq | Structured version Visualization version GIF version |
Description: Uniqueness condition for the binary relation 2nd. (Contributed by Scott Fenton, 11-Apr-2014.) (Proof shortened by Mario Carneiro, 3-May-2015.) |
Ref | Expression |
---|---|
br1steq.1 | ⊢ 𝐴 ∈ V |
br1steq.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
br2ndeq | ⊢ (〈𝐴, 𝐵〉2nd 𝐶 ↔ 𝐶 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br1steq.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | br1steq.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | br2ndeqg 8053 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (〈𝐴, 𝐵〉2nd 𝐶 ↔ 𝐶 = 𝐵)) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ (〈𝐴, 𝐵〉2nd 𝐶 ↔ 𝐶 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 Vcvv 3488 〈cop 4654 class class class wbr 5166 2nd c2nd 8029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-2nd 8031 |
This theorem is referenced by: dfrn5 35737 brtxp 35844 brpprod 35849 elfuns 35879 brimg 35901 brcup 35903 brcap 35904 brrestrict 35913 |
Copyright terms: Public domain | W3C validator |