Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br2ndeq Structured version   Visualization version   GIF version

Theorem br2ndeq 35888
Description: Uniqueness condition for the binary relation 2nd. (Contributed by Scott Fenton, 11-Apr-2014.) (Proof shortened by Mario Carneiro, 3-May-2015.)
Hypotheses
Ref Expression
br1steq.1 𝐴 ∈ V
br1steq.2 𝐵 ∈ V
Assertion
Ref Expression
br2ndeq (⟨𝐴, 𝐵⟩2nd 𝐶𝐶 = 𝐵)

Proof of Theorem br2ndeq
StepHypRef Expression
1 br1steq.1 . 2 𝐴 ∈ V
2 br1steq.2 . 2 𝐵 ∈ V
3 br2ndeqg 7953 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (⟨𝐴, 𝐵⟩2nd 𝐶𝐶 = 𝐵))
41, 2, 3mp2an 692 1 (⟨𝐴, 𝐵⟩2nd 𝐶𝐶 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2113  Vcvv 3437  cop 4583   class class class wbr 5095  2nd c2nd 7929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fo 6495  df-fv 6497  df-2nd 7931
This theorem is referenced by:  dfrn5  35890  brtxp  35994  brpprod  35999  elfuns  36029  brimg  36051  brcup  36053  brcap  36054  brrestrict  36065
  Copyright terms: Public domain W3C validator