| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > br2ndeq | Structured version Visualization version GIF version | ||
| Description: Uniqueness condition for the binary relation 2nd. (Contributed by Scott Fenton, 11-Apr-2014.) (Proof shortened by Mario Carneiro, 3-May-2015.) |
| Ref | Expression |
|---|---|
| br1steq.1 | ⊢ 𝐴 ∈ V |
| br1steq.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| br2ndeq | ⊢ (〈𝐴, 𝐵〉2nd 𝐶 ↔ 𝐶 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | br1steq.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | br1steq.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | br2ndeqg 7939 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (〈𝐴, 𝐵〉2nd 𝐶 ↔ 𝐶 = 𝐵)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (〈𝐴, 𝐵〉2nd 𝐶 ↔ 𝐶 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4577 class class class wbr 5086 2nd c2nd 7915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fo 6482 df-fv 6484 df-2nd 7917 |
| This theorem is referenced by: dfrn5 35810 brtxp 35914 brpprod 35919 elfuns 35949 brimg 35971 brcup 35973 brcap 35974 brrestrict 35983 |
| Copyright terms: Public domain | W3C validator |