| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > br2ndeq | Structured version Visualization version GIF version | ||
| Description: Uniqueness condition for the binary relation 2nd. (Contributed by Scott Fenton, 11-Apr-2014.) (Proof shortened by Mario Carneiro, 3-May-2015.) |
| Ref | Expression |
|---|---|
| br1steq.1 | ⊢ 𝐴 ∈ V |
| br1steq.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| br2ndeq | ⊢ (〈𝐴, 𝐵〉2nd 𝐶 ↔ 𝐶 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | br1steq.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | br1steq.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | br2ndeqg 8009 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (〈𝐴, 𝐵〉2nd 𝐶 ↔ 𝐶 = 𝐵)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (〈𝐴, 𝐵〉2nd 𝐶 ↔ 𝐶 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2108 Vcvv 3459 〈cop 4607 class class class wbr 5119 2nd c2nd 7985 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fo 6536 df-fv 6538 df-2nd 7987 |
| This theorem is referenced by: dfrn5 35737 brtxp 35844 brpprod 35849 elfuns 35879 brimg 35901 brcup 35903 brcap 35904 brrestrict 35913 |
| Copyright terms: Public domain | W3C validator |