MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  br2ndeqg Structured version   Visualization version   GIF version

Theorem br2ndeqg 7939
Description: Uniqueness condition for the binary relation 2nd. (Contributed by Scott Fenton, 2-Jul-2020.) Revised to remove sethood hypothesis on 𝐶. (Revised by Peter Mazsa, 17-Jan-2022.)
Assertion
Ref Expression
br2ndeqg ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩2nd 𝐶𝐶 = 𝐵))

Proof of Theorem br2ndeqg
StepHypRef Expression
1 op2ndg 7929 . . 3 ((𝐴𝑉𝐵𝑊) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
21eqeq1d 2733 . 2 ((𝐴𝑉𝐵𝑊) → ((2nd ‘⟨𝐴, 𝐵⟩) = 𝐶𝐵 = 𝐶))
3 fo2nd 7937 . . . 4 2nd :V–onto→V
4 fofn 6732 . . . 4 (2nd :V–onto→V → 2nd Fn V)
53, 4ax-mp 5 . . 3 2nd Fn V
6 opex 5399 . . 3 𝐴, 𝐵⟩ ∈ V
7 fnbrfvb 6867 . . 3 ((2nd Fn V ∧ ⟨𝐴, 𝐵⟩ ∈ V) → ((2nd ‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨𝐴, 𝐵⟩2nd 𝐶))
85, 6, 7mp2an 692 . 2 ((2nd ‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨𝐴, 𝐵⟩2nd 𝐶)
9 eqcom 2738 . 2 (𝐵 = 𝐶𝐶 = 𝐵)
102, 8, 93bitr3g 313 1 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩2nd 𝐶𝐶 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cop 4577   class class class wbr 5086   Fn wfn 6471  ontowfo 6474  cfv 6476  2nd c2nd 7915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fo 6482  df-fv 6484  df-2nd 7917
This theorem is referenced by:  br2ndeq  35808  fv2ndcnv  35814  brxrn  38402
  Copyright terms: Public domain W3C validator