| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > br2ndeqg | Structured version Visualization version GIF version | ||
| Description: Uniqueness condition for the binary relation 2nd. (Contributed by Scott Fenton, 2-Jul-2020.) Revised to remove sethood hypothesis on 𝐶. (Revised by Peter Mazsa, 17-Jan-2022.) |
| Ref | Expression |
|---|---|
| br2ndeqg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉2nd 𝐶 ↔ 𝐶 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | op2ndg 7990 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) | |
| 2 | 1 | eqeq1d 2732 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((2nd ‘〈𝐴, 𝐵〉) = 𝐶 ↔ 𝐵 = 𝐶)) |
| 3 | fo2nd 7998 | . . . 4 ⊢ 2nd :V–onto→V | |
| 4 | fofn 6781 | . . . 4 ⊢ (2nd :V–onto→V → 2nd Fn V) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ 2nd Fn V |
| 6 | opex 5432 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
| 7 | fnbrfvb 6918 | . . 3 ⊢ ((2nd Fn V ∧ 〈𝐴, 𝐵〉 ∈ V) → ((2nd ‘〈𝐴, 𝐵〉) = 𝐶 ↔ 〈𝐴, 𝐵〉2nd 𝐶)) | |
| 8 | 5, 6, 7 | mp2an 692 | . 2 ⊢ ((2nd ‘〈𝐴, 𝐵〉) = 𝐶 ↔ 〈𝐴, 𝐵〉2nd 𝐶) |
| 9 | eqcom 2737 | . 2 ⊢ (𝐵 = 𝐶 ↔ 𝐶 = 𝐵) | |
| 10 | 2, 8, 9 | 3bitr3g 313 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉2nd 𝐶 ↔ 𝐶 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3455 〈cop 4603 class class class wbr 5115 Fn wfn 6514 –onto→wfo 6517 ‘cfv 6519 2nd c2nd 7976 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-fo 6525 df-fv 6527 df-2nd 7978 |
| This theorem is referenced by: br2ndeq 35756 fv2ndcnv 35762 brxrn 38359 |
| Copyright terms: Public domain | W3C validator |