Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > br2ndeqg | Structured version Visualization version GIF version |
Description: Uniqueness condition for the binary relation 2nd. (Contributed by Scott Fenton, 2-Jul-2020.) Revised to remove sethood hypothesis on 𝐶. (Revised by Peter Mazsa, 17-Jan-2022.) |
Ref | Expression |
---|---|
br2ndeqg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉2nd 𝐶 ↔ 𝐶 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | op2ndg 7830 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) | |
2 | 1 | eqeq1d 2741 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((2nd ‘〈𝐴, 𝐵〉) = 𝐶 ↔ 𝐵 = 𝐶)) |
3 | fo2nd 7838 | . . . 4 ⊢ 2nd :V–onto→V | |
4 | fofn 6686 | . . . 4 ⊢ (2nd :V–onto→V → 2nd Fn V) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ 2nd Fn V |
6 | opex 5381 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
7 | fnbrfvb 6816 | . . 3 ⊢ ((2nd Fn V ∧ 〈𝐴, 𝐵〉 ∈ V) → ((2nd ‘〈𝐴, 𝐵〉) = 𝐶 ↔ 〈𝐴, 𝐵〉2nd 𝐶)) | |
8 | 5, 6, 7 | mp2an 688 | . 2 ⊢ ((2nd ‘〈𝐴, 𝐵〉) = 𝐶 ↔ 〈𝐴, 𝐵〉2nd 𝐶) |
9 | eqcom 2746 | . 2 ⊢ (𝐵 = 𝐶 ↔ 𝐶 = 𝐵) | |
10 | 2, 8, 9 | 3bitr3g 312 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉2nd 𝐶 ↔ 𝐶 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 Vcvv 3430 〈cop 4572 class class class wbr 5078 Fn wfn 6425 –onto→wfo 6428 ‘cfv 6430 2nd c2nd 7816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fo 6436 df-fv 6438 df-2nd 7818 |
This theorem is referenced by: br2ndeq 33725 fv2ndcnv 33731 brxrn 36483 |
Copyright terms: Public domain | W3C validator |