MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  br2ndeqg Structured version   Visualization version   GIF version

Theorem br2ndeqg 8000
Description: Uniqueness condition for the binary relation 2nd. (Contributed by Scott Fenton, 2-Jul-2020.) Revised to remove sethood hypothesis on 𝐶. (Revised by Peter Mazsa, 17-Jan-2022.)
Assertion
Ref Expression
br2ndeqg ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩2nd 𝐶𝐶 = 𝐵))

Proof of Theorem br2ndeqg
StepHypRef Expression
1 op2ndg 7990 . . 3 ((𝐴𝑉𝐵𝑊) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
21eqeq1d 2732 . 2 ((𝐴𝑉𝐵𝑊) → ((2nd ‘⟨𝐴, 𝐵⟩) = 𝐶𝐵 = 𝐶))
3 fo2nd 7998 . . . 4 2nd :V–onto→V
4 fofn 6781 . . . 4 (2nd :V–onto→V → 2nd Fn V)
53, 4ax-mp 5 . . 3 2nd Fn V
6 opex 5432 . . 3 𝐴, 𝐵⟩ ∈ V
7 fnbrfvb 6918 . . 3 ((2nd Fn V ∧ ⟨𝐴, 𝐵⟩ ∈ V) → ((2nd ‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨𝐴, 𝐵⟩2nd 𝐶))
85, 6, 7mp2an 692 . 2 ((2nd ‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨𝐴, 𝐵⟩2nd 𝐶)
9 eqcom 2737 . 2 (𝐵 = 𝐶𝐶 = 𝐵)
102, 8, 93bitr3g 313 1 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩2nd 𝐶𝐶 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3455  cop 4603   class class class wbr 5115   Fn wfn 6514  ontowfo 6517  cfv 6519  2nd c2nd 7976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-fo 6525  df-fv 6527  df-2nd 7978
This theorem is referenced by:  br2ndeq  35756  fv2ndcnv  35762  brxrn  38359
  Copyright terms: Public domain W3C validator