![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > br2ndeqg | Structured version Visualization version GIF version |
Description: Uniqueness condition for the binary relation 2nd. (Contributed by Scott Fenton, 2-Jul-2020.) Revised to remove sethood hypothesis on š¶. (Revised by Peter Mazsa, 17-Jan-2022.) |
Ref | Expression |
---|---|
br2ndeqg | ā¢ ((š“ ā š ā§ šµ ā š) ā (āØš“, šµā©2nd š¶ ā š¶ = šµ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | op2ndg 7990 | . . 3 ā¢ ((š“ ā š ā§ šµ ā š) ā (2nd āāØš“, šµā©) = šµ) | |
2 | 1 | eqeq1d 2732 | . 2 ā¢ ((š“ ā š ā§ šµ ā š) ā ((2nd āāØš“, šµā©) = š¶ ā šµ = š¶)) |
3 | fo2nd 7998 | . . . 4 ā¢ 2nd :VāontoāV | |
4 | fofn 6806 | . . . 4 ā¢ (2nd :VāontoāV ā 2nd Fn V) | |
5 | 3, 4 | ax-mp 5 | . . 3 ā¢ 2nd Fn V |
6 | opex 5463 | . . 3 ā¢ āØš“, šµā© ā V | |
7 | fnbrfvb 6943 | . . 3 ā¢ ((2nd Fn V ā§ āØš“, šµā© ā V) ā ((2nd āāØš“, šµā©) = š¶ ā āØš“, šµā©2nd š¶)) | |
8 | 5, 6, 7 | mp2an 688 | . 2 ā¢ ((2nd āāØš“, šµā©) = š¶ ā āØš“, šµā©2nd š¶) |
9 | eqcom 2737 | . 2 ā¢ (šµ = š¶ ā š¶ = šµ) | |
10 | 2, 8, 9 | 3bitr3g 312 | 1 ā¢ ((š“ ā š ā§ šµ ā š) ā (āØš“, šµā©2nd š¶ ā š¶ = šµ)) |
Colors of variables: wff setvar class |
Syntax hints: ā wi 4 ā wb 205 ā§ wa 394 = wceq 1539 ā wcel 2104 Vcvv 3472 āØcop 4633 class class class wbr 5147 Fn wfn 6537 āontoāwfo 6540 ācfv 6542 2nd c2nd 7976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fo 6548 df-fv 6550 df-2nd 7978 |
This theorem is referenced by: br2ndeq 35047 fv2ndcnv 35053 brxrn 37547 |
Copyright terms: Public domain | W3C validator |