MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  br2ndeqg Structured version   Visualization version   GIF version

Theorem br2ndeqg 8000
Description: Uniqueness condition for the binary relation 2nd. (Contributed by Scott Fenton, 2-Jul-2020.) Revised to remove sethood hypothesis on š¶. (Revised by Peter Mazsa, 17-Jan-2022.)
Assertion
Ref Expression
br2ndeqg ((š“ āˆˆ š‘‰ āˆ§ šµ āˆˆ š‘Š) ā†’ (āŸØš“, šµāŸ©2nd š¶ ā†” š¶ = šµ))

Proof of Theorem br2ndeqg
StepHypRef Expression
1 op2ndg 7990 . . 3 ((š“ āˆˆ š‘‰ āˆ§ šµ āˆˆ š‘Š) ā†’ (2nd ā€˜āŸØš“, šµāŸ©) = šµ)
21eqeq1d 2732 . 2 ((š“ āˆˆ š‘‰ āˆ§ šµ āˆˆ š‘Š) ā†’ ((2nd ā€˜āŸØš“, šµāŸ©) = š¶ ā†” šµ = š¶))
3 fo2nd 7998 . . . 4 2nd :Vā€“ontoā†’V
4 fofn 6806 . . . 4 (2nd :Vā€“ontoā†’V ā†’ 2nd Fn V)
53, 4ax-mp 5 . . 3 2nd Fn V
6 opex 5463 . . 3 āŸØš“, šµāŸ© āˆˆ V
7 fnbrfvb 6943 . . 3 ((2nd Fn V āˆ§ āŸØš“, šµāŸ© āˆˆ V) ā†’ ((2nd ā€˜āŸØš“, šµāŸ©) = š¶ ā†” āŸØš“, šµāŸ©2nd š¶))
85, 6, 7mp2an 688 . 2 ((2nd ā€˜āŸØš“, šµāŸ©) = š¶ ā†” āŸØš“, šµāŸ©2nd š¶)
9 eqcom 2737 . 2 (šµ = š¶ ā†” š¶ = šµ)
102, 8, 93bitr3g 312 1 ((š“ āˆˆ š‘‰ āˆ§ šµ āˆˆ š‘Š) ā†’ (āŸØš“, šµāŸ©2nd š¶ ā†” š¶ = šµ))
Colors of variables: wff setvar class
Syntax hints:   ā†’ wi 4   ā†” wb 205   āˆ§ wa 394   = wceq 1539   āˆˆ wcel 2104  Vcvv 3472  āŸØcop 4633   class class class wbr 5147   Fn wfn 6537  ā€“ontoā†’wfo 6540  ā€˜cfv 6542  2nd c2nd 7976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fo 6548  df-fv 6550  df-2nd 7978
This theorem is referenced by:  br2ndeq  35047  fv2ndcnv  35053  brxrn  37547
  Copyright terms: Public domain W3C validator