| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > br2ndeqg | Structured version Visualization version GIF version | ||
| Description: Uniqueness condition for the binary relation 2nd. (Contributed by Scott Fenton, 2-Jul-2020.) Revised to remove sethood hypothesis on 𝐶. (Revised by Peter Mazsa, 17-Jan-2022.) |
| Ref | Expression |
|---|---|
| br2ndeqg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉2nd 𝐶 ↔ 𝐶 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | op2ndg 7929 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) | |
| 2 | 1 | eqeq1d 2733 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((2nd ‘〈𝐴, 𝐵〉) = 𝐶 ↔ 𝐵 = 𝐶)) |
| 3 | fo2nd 7937 | . . . 4 ⊢ 2nd :V–onto→V | |
| 4 | fofn 6732 | . . . 4 ⊢ (2nd :V–onto→V → 2nd Fn V) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ 2nd Fn V |
| 6 | opex 5399 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
| 7 | fnbrfvb 6867 | . . 3 ⊢ ((2nd Fn V ∧ 〈𝐴, 𝐵〉 ∈ V) → ((2nd ‘〈𝐴, 𝐵〉) = 𝐶 ↔ 〈𝐴, 𝐵〉2nd 𝐶)) | |
| 8 | 5, 6, 7 | mp2an 692 | . 2 ⊢ ((2nd ‘〈𝐴, 𝐵〉) = 𝐶 ↔ 〈𝐴, 𝐵〉2nd 𝐶) |
| 9 | eqcom 2738 | . 2 ⊢ (𝐵 = 𝐶 ↔ 𝐶 = 𝐵) | |
| 10 | 2, 8, 9 | 3bitr3g 313 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉2nd 𝐶 ↔ 𝐶 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4577 class class class wbr 5086 Fn wfn 6471 –onto→wfo 6474 ‘cfv 6476 2nd c2nd 7915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fo 6482 df-fv 6484 df-2nd 7917 |
| This theorem is referenced by: br2ndeq 35808 fv2ndcnv 35814 brxrn 38402 |
| Copyright terms: Public domain | W3C validator |