Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fv2ndcnv Structured version   Visualization version   GIF version

Theorem fv2ndcnv 35755
Description: The value of the converse of 2nd restricted to a singleton. (Contributed by Scott Fenton, 2-Jul-2020.)
Assertion
Ref Expression
fv2ndcnv ((𝑋𝑉𝑌𝐴) → ((2nd ↾ ({𝑋} × 𝐴))‘𝑌) = ⟨𝑋, 𝑌⟩)

Proof of Theorem fv2ndcnv
StepHypRef Expression
1 snidg 4612 . . . 4 (𝑋𝑉𝑋 ∈ {𝑋})
21anim1i 615 . . 3 ((𝑋𝑉𝑌𝐴) → (𝑋 ∈ {𝑋} ∧ 𝑌𝐴))
3 eqid 2729 . . 3 𝑌 = 𝑌
42, 3jctir 520 . 2 ((𝑋𝑉𝑌𝐴) → ((𝑋 ∈ {𝑋} ∧ 𝑌𝐴) ∧ 𝑌 = 𝑌))
5 2ndconst 8034 . . . . . 6 (𝑋𝑉 → (2nd ↾ ({𝑋} × 𝐴)):({𝑋} × 𝐴)–1-1-onto𝐴)
65adantr 480 . . . . 5 ((𝑋𝑉𝑌𝐴) → (2nd ↾ ({𝑋} × 𝐴)):({𝑋} × 𝐴)–1-1-onto𝐴)
7 f1ocnv 6776 . . . . 5 ((2nd ↾ ({𝑋} × 𝐴)):({𝑋} × 𝐴)–1-1-onto𝐴(2nd ↾ ({𝑋} × 𝐴)):𝐴1-1-onto→({𝑋} × 𝐴))
8 f1ofn 6765 . . . . 5 ((2nd ↾ ({𝑋} × 𝐴)):𝐴1-1-onto→({𝑋} × 𝐴) → (2nd ↾ ({𝑋} × 𝐴)) Fn 𝐴)
96, 7, 83syl 18 . . . 4 ((𝑋𝑉𝑌𝐴) → (2nd ↾ ({𝑋} × 𝐴)) Fn 𝐴)
10 fnbrfvb 6873 . . . 4 (((2nd ↾ ({𝑋} × 𝐴)) Fn 𝐴𝑌𝐴) → (((2nd ↾ ({𝑋} × 𝐴))‘𝑌) = ⟨𝑋, 𝑌⟩ ↔ 𝑌(2nd ↾ ({𝑋} × 𝐴))⟨𝑋, 𝑌⟩))
119, 10sylancom 588 . . 3 ((𝑋𝑉𝑌𝐴) → (((2nd ↾ ({𝑋} × 𝐴))‘𝑌) = ⟨𝑋, 𝑌⟩ ↔ 𝑌(2nd ↾ ({𝑋} × 𝐴))⟨𝑋, 𝑌⟩))
12 opex 5407 . . . . . 6 𝑋, 𝑌⟩ ∈ V
13 brcnvg 5822 . . . . . 6 ((𝑌𝐴 ∧ ⟨𝑋, 𝑌⟩ ∈ V) → (𝑌(2nd ↾ ({𝑋} × 𝐴))⟨𝑋, 𝑌⟩ ↔ ⟨𝑋, 𝑌⟩(2nd ↾ ({𝑋} × 𝐴))𝑌))
1412, 13mpan2 691 . . . . 5 (𝑌𝐴 → (𝑌(2nd ↾ ({𝑋} × 𝐴))⟨𝑋, 𝑌⟩ ↔ ⟨𝑋, 𝑌⟩(2nd ↾ ({𝑋} × 𝐴))𝑌))
1514adantl 481 . . . 4 ((𝑋𝑉𝑌𝐴) → (𝑌(2nd ↾ ({𝑋} × 𝐴))⟨𝑋, 𝑌⟩ ↔ ⟨𝑋, 𝑌⟩(2nd ↾ ({𝑋} × 𝐴))𝑌))
16 brres 5937 . . . . . 6 (𝑌𝐴 → (⟨𝑋, 𝑌⟩(2nd ↾ ({𝑋} × 𝐴))𝑌 ↔ (⟨𝑋, 𝑌⟩ ∈ ({𝑋} × 𝐴) ∧ ⟨𝑋, 𝑌⟩2nd 𝑌)))
1716adantl 481 . . . . 5 ((𝑋𝑉𝑌𝐴) → (⟨𝑋, 𝑌⟩(2nd ↾ ({𝑋} × 𝐴))𝑌 ↔ (⟨𝑋, 𝑌⟩ ∈ ({𝑋} × 𝐴) ∧ ⟨𝑋, 𝑌⟩2nd 𝑌)))
18 opelxp 5655 . . . . . . 7 (⟨𝑋, 𝑌⟩ ∈ ({𝑋} × 𝐴) ↔ (𝑋 ∈ {𝑋} ∧ 𝑌𝐴))
1918anbi1i 624 . . . . . 6 ((⟨𝑋, 𝑌⟩ ∈ ({𝑋} × 𝐴) ∧ ⟨𝑋, 𝑌⟩2nd 𝑌) ↔ ((𝑋 ∈ {𝑋} ∧ 𝑌𝐴) ∧ ⟨𝑋, 𝑌⟩2nd 𝑌))
20 br2ndeqg 7947 . . . . . . 7 ((𝑋𝑉𝑌𝐴) → (⟨𝑋, 𝑌⟩2nd 𝑌𝑌 = 𝑌))
2120anbi2d 630 . . . . . 6 ((𝑋𝑉𝑌𝐴) → (((𝑋 ∈ {𝑋} ∧ 𝑌𝐴) ∧ ⟨𝑋, 𝑌⟩2nd 𝑌) ↔ ((𝑋 ∈ {𝑋} ∧ 𝑌𝐴) ∧ 𝑌 = 𝑌)))
2219, 21bitrid 283 . . . . 5 ((𝑋𝑉𝑌𝐴) → ((⟨𝑋, 𝑌⟩ ∈ ({𝑋} × 𝐴) ∧ ⟨𝑋, 𝑌⟩2nd 𝑌) ↔ ((𝑋 ∈ {𝑋} ∧ 𝑌𝐴) ∧ 𝑌 = 𝑌)))
2317, 22bitrd 279 . . . 4 ((𝑋𝑉𝑌𝐴) → (⟨𝑋, 𝑌⟩(2nd ↾ ({𝑋} × 𝐴))𝑌 ↔ ((𝑋 ∈ {𝑋} ∧ 𝑌𝐴) ∧ 𝑌 = 𝑌)))
2415, 23bitrd 279 . . 3 ((𝑋𝑉𝑌𝐴) → (𝑌(2nd ↾ ({𝑋} × 𝐴))⟨𝑋, 𝑌⟩ ↔ ((𝑋 ∈ {𝑋} ∧ 𝑌𝐴) ∧ 𝑌 = 𝑌)))
2511, 24bitrd 279 . 2 ((𝑋𝑉𝑌𝐴) → (((2nd ↾ ({𝑋} × 𝐴))‘𝑌) = ⟨𝑋, 𝑌⟩ ↔ ((𝑋 ∈ {𝑋} ∧ 𝑌𝐴) ∧ 𝑌 = 𝑌)))
264, 25mpbird 257 1 ((𝑋𝑉𝑌𝐴) → ((2nd ↾ ({𝑋} × 𝐴))‘𝑌) = ⟨𝑋, 𝑌⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  {csn 4577  cop 4583   class class class wbr 5092   × cxp 5617  ccnv 5618  cres 5621   Fn wfn 6477  1-1-ontowf1o 6481  cfv 6482  2nd c2nd 7923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-1st 7924  df-2nd 7925
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator