Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fv2ndcnv Structured version   Visualization version   GIF version

Theorem fv2ndcnv 35758
Description: The value of the converse of 2nd restricted to a singleton. (Contributed by Scott Fenton, 2-Jul-2020.)
Assertion
Ref Expression
fv2ndcnv ((𝑋𝑉𝑌𝐴) → ((2nd ↾ ({𝑋} × 𝐴))‘𝑌) = ⟨𝑋, 𝑌⟩)

Proof of Theorem fv2ndcnv
StepHypRef Expression
1 snidg 4620 . . . 4 (𝑋𝑉𝑋 ∈ {𝑋})
21anim1i 615 . . 3 ((𝑋𝑉𝑌𝐴) → (𝑋 ∈ {𝑋} ∧ 𝑌𝐴))
3 eqid 2729 . . 3 𝑌 = 𝑌
42, 3jctir 520 . 2 ((𝑋𝑉𝑌𝐴) → ((𝑋 ∈ {𝑋} ∧ 𝑌𝐴) ∧ 𝑌 = 𝑌))
5 2ndconst 8057 . . . . . 6 (𝑋𝑉 → (2nd ↾ ({𝑋} × 𝐴)):({𝑋} × 𝐴)–1-1-onto𝐴)
65adantr 480 . . . . 5 ((𝑋𝑉𝑌𝐴) → (2nd ↾ ({𝑋} × 𝐴)):({𝑋} × 𝐴)–1-1-onto𝐴)
7 f1ocnv 6794 . . . . 5 ((2nd ↾ ({𝑋} × 𝐴)):({𝑋} × 𝐴)–1-1-onto𝐴(2nd ↾ ({𝑋} × 𝐴)):𝐴1-1-onto→({𝑋} × 𝐴))
8 f1ofn 6783 . . . . 5 ((2nd ↾ ({𝑋} × 𝐴)):𝐴1-1-onto→({𝑋} × 𝐴) → (2nd ↾ ({𝑋} × 𝐴)) Fn 𝐴)
96, 7, 83syl 18 . . . 4 ((𝑋𝑉𝑌𝐴) → (2nd ↾ ({𝑋} × 𝐴)) Fn 𝐴)
10 fnbrfvb 6893 . . . 4 (((2nd ↾ ({𝑋} × 𝐴)) Fn 𝐴𝑌𝐴) → (((2nd ↾ ({𝑋} × 𝐴))‘𝑌) = ⟨𝑋, 𝑌⟩ ↔ 𝑌(2nd ↾ ({𝑋} × 𝐴))⟨𝑋, 𝑌⟩))
119, 10sylancom 588 . . 3 ((𝑋𝑉𝑌𝐴) → (((2nd ↾ ({𝑋} × 𝐴))‘𝑌) = ⟨𝑋, 𝑌⟩ ↔ 𝑌(2nd ↾ ({𝑋} × 𝐴))⟨𝑋, 𝑌⟩))
12 opex 5419 . . . . . 6 𝑋, 𝑌⟩ ∈ V
13 brcnvg 5833 . . . . . 6 ((𝑌𝐴 ∧ ⟨𝑋, 𝑌⟩ ∈ V) → (𝑌(2nd ↾ ({𝑋} × 𝐴))⟨𝑋, 𝑌⟩ ↔ ⟨𝑋, 𝑌⟩(2nd ↾ ({𝑋} × 𝐴))𝑌))
1412, 13mpan2 691 . . . . 5 (𝑌𝐴 → (𝑌(2nd ↾ ({𝑋} × 𝐴))⟨𝑋, 𝑌⟩ ↔ ⟨𝑋, 𝑌⟩(2nd ↾ ({𝑋} × 𝐴))𝑌))
1514adantl 481 . . . 4 ((𝑋𝑉𝑌𝐴) → (𝑌(2nd ↾ ({𝑋} × 𝐴))⟨𝑋, 𝑌⟩ ↔ ⟨𝑋, 𝑌⟩(2nd ↾ ({𝑋} × 𝐴))𝑌))
16 brres 5946 . . . . . 6 (𝑌𝐴 → (⟨𝑋, 𝑌⟩(2nd ↾ ({𝑋} × 𝐴))𝑌 ↔ (⟨𝑋, 𝑌⟩ ∈ ({𝑋} × 𝐴) ∧ ⟨𝑋, 𝑌⟩2nd 𝑌)))
1716adantl 481 . . . . 5 ((𝑋𝑉𝑌𝐴) → (⟨𝑋, 𝑌⟩(2nd ↾ ({𝑋} × 𝐴))𝑌 ↔ (⟨𝑋, 𝑌⟩ ∈ ({𝑋} × 𝐴) ∧ ⟨𝑋, 𝑌⟩2nd 𝑌)))
18 opelxp 5667 . . . . . . 7 (⟨𝑋, 𝑌⟩ ∈ ({𝑋} × 𝐴) ↔ (𝑋 ∈ {𝑋} ∧ 𝑌𝐴))
1918anbi1i 624 . . . . . 6 ((⟨𝑋, 𝑌⟩ ∈ ({𝑋} × 𝐴) ∧ ⟨𝑋, 𝑌⟩2nd 𝑌) ↔ ((𝑋 ∈ {𝑋} ∧ 𝑌𝐴) ∧ ⟨𝑋, 𝑌⟩2nd 𝑌))
20 br2ndeqg 7970 . . . . . . 7 ((𝑋𝑉𝑌𝐴) → (⟨𝑋, 𝑌⟩2nd 𝑌𝑌 = 𝑌))
2120anbi2d 630 . . . . . 6 ((𝑋𝑉𝑌𝐴) → (((𝑋 ∈ {𝑋} ∧ 𝑌𝐴) ∧ ⟨𝑋, 𝑌⟩2nd 𝑌) ↔ ((𝑋 ∈ {𝑋} ∧ 𝑌𝐴) ∧ 𝑌 = 𝑌)))
2219, 21bitrid 283 . . . . 5 ((𝑋𝑉𝑌𝐴) → ((⟨𝑋, 𝑌⟩ ∈ ({𝑋} × 𝐴) ∧ ⟨𝑋, 𝑌⟩2nd 𝑌) ↔ ((𝑋 ∈ {𝑋} ∧ 𝑌𝐴) ∧ 𝑌 = 𝑌)))
2317, 22bitrd 279 . . . 4 ((𝑋𝑉𝑌𝐴) → (⟨𝑋, 𝑌⟩(2nd ↾ ({𝑋} × 𝐴))𝑌 ↔ ((𝑋 ∈ {𝑋} ∧ 𝑌𝐴) ∧ 𝑌 = 𝑌)))
2415, 23bitrd 279 . . 3 ((𝑋𝑉𝑌𝐴) → (𝑌(2nd ↾ ({𝑋} × 𝐴))⟨𝑋, 𝑌⟩ ↔ ((𝑋 ∈ {𝑋} ∧ 𝑌𝐴) ∧ 𝑌 = 𝑌)))
2511, 24bitrd 279 . 2 ((𝑋𝑉𝑌𝐴) → (((2nd ↾ ({𝑋} × 𝐴))‘𝑌) = ⟨𝑋, 𝑌⟩ ↔ ((𝑋 ∈ {𝑋} ∧ 𝑌𝐴) ∧ 𝑌 = 𝑌)))
264, 25mpbird 257 1 ((𝑋𝑉𝑌𝐴) → ((2nd ↾ ({𝑋} × 𝐴))‘𝑌) = ⟨𝑋, 𝑌⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  {csn 4585  cop 4591   class class class wbr 5102   × cxp 5629  ccnv 5630  cres 5633   Fn wfn 6494  1-1-ontowf1o 6498  cfv 6499  2nd c2nd 7946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-1st 7947  df-2nd 7948
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator