Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fv2ndcnv Structured version   Visualization version   GIF version

Theorem fv2ndcnv 35822
Description: The value of the converse of 2nd restricted to a singleton. (Contributed by Scott Fenton, 2-Jul-2020.)
Assertion
Ref Expression
fv2ndcnv ((𝑋𝑉𝑌𝐴) → ((2nd ↾ ({𝑋} × 𝐴))‘𝑌) = ⟨𝑋, 𝑌⟩)

Proof of Theorem fv2ndcnv
StepHypRef Expression
1 snidg 4610 . . . 4 (𝑋𝑉𝑋 ∈ {𝑋})
21anim1i 615 . . 3 ((𝑋𝑉𝑌𝐴) → (𝑋 ∈ {𝑋} ∧ 𝑌𝐴))
3 eqid 2731 . . 3 𝑌 = 𝑌
42, 3jctir 520 . 2 ((𝑋𝑉𝑌𝐴) → ((𝑋 ∈ {𝑋} ∧ 𝑌𝐴) ∧ 𝑌 = 𝑌))
5 2ndconst 8031 . . . . . 6 (𝑋𝑉 → (2nd ↾ ({𝑋} × 𝐴)):({𝑋} × 𝐴)–1-1-onto𝐴)
65adantr 480 . . . . 5 ((𝑋𝑉𝑌𝐴) → (2nd ↾ ({𝑋} × 𝐴)):({𝑋} × 𝐴)–1-1-onto𝐴)
7 f1ocnv 6775 . . . . 5 ((2nd ↾ ({𝑋} × 𝐴)):({𝑋} × 𝐴)–1-1-onto𝐴(2nd ↾ ({𝑋} × 𝐴)):𝐴1-1-onto→({𝑋} × 𝐴))
8 f1ofn 6764 . . . . 5 ((2nd ↾ ({𝑋} × 𝐴)):𝐴1-1-onto→({𝑋} × 𝐴) → (2nd ↾ ({𝑋} × 𝐴)) Fn 𝐴)
96, 7, 83syl 18 . . . 4 ((𝑋𝑉𝑌𝐴) → (2nd ↾ ({𝑋} × 𝐴)) Fn 𝐴)
10 fnbrfvb 6872 . . . 4 (((2nd ↾ ({𝑋} × 𝐴)) Fn 𝐴𝑌𝐴) → (((2nd ↾ ({𝑋} × 𝐴))‘𝑌) = ⟨𝑋, 𝑌⟩ ↔ 𝑌(2nd ↾ ({𝑋} × 𝐴))⟨𝑋, 𝑌⟩))
119, 10sylancom 588 . . 3 ((𝑋𝑉𝑌𝐴) → (((2nd ↾ ({𝑋} × 𝐴))‘𝑌) = ⟨𝑋, 𝑌⟩ ↔ 𝑌(2nd ↾ ({𝑋} × 𝐴))⟨𝑋, 𝑌⟩))
12 opex 5402 . . . . . 6 𝑋, 𝑌⟩ ∈ V
13 brcnvg 5818 . . . . . 6 ((𝑌𝐴 ∧ ⟨𝑋, 𝑌⟩ ∈ V) → (𝑌(2nd ↾ ({𝑋} × 𝐴))⟨𝑋, 𝑌⟩ ↔ ⟨𝑋, 𝑌⟩(2nd ↾ ({𝑋} × 𝐴))𝑌))
1412, 13mpan2 691 . . . . 5 (𝑌𝐴 → (𝑌(2nd ↾ ({𝑋} × 𝐴))⟨𝑋, 𝑌⟩ ↔ ⟨𝑋, 𝑌⟩(2nd ↾ ({𝑋} × 𝐴))𝑌))
1514adantl 481 . . . 4 ((𝑋𝑉𝑌𝐴) → (𝑌(2nd ↾ ({𝑋} × 𝐴))⟨𝑋, 𝑌⟩ ↔ ⟨𝑋, 𝑌⟩(2nd ↾ ({𝑋} × 𝐴))𝑌))
16 brres 5934 . . . . . 6 (𝑌𝐴 → (⟨𝑋, 𝑌⟩(2nd ↾ ({𝑋} × 𝐴))𝑌 ↔ (⟨𝑋, 𝑌⟩ ∈ ({𝑋} × 𝐴) ∧ ⟨𝑋, 𝑌⟩2nd 𝑌)))
1716adantl 481 . . . . 5 ((𝑋𝑉𝑌𝐴) → (⟨𝑋, 𝑌⟩(2nd ↾ ({𝑋} × 𝐴))𝑌 ↔ (⟨𝑋, 𝑌⟩ ∈ ({𝑋} × 𝐴) ∧ ⟨𝑋, 𝑌⟩2nd 𝑌)))
18 opelxp 5650 . . . . . . 7 (⟨𝑋, 𝑌⟩ ∈ ({𝑋} × 𝐴) ↔ (𝑋 ∈ {𝑋} ∧ 𝑌𝐴))
1918anbi1i 624 . . . . . 6 ((⟨𝑋, 𝑌⟩ ∈ ({𝑋} × 𝐴) ∧ ⟨𝑋, 𝑌⟩2nd 𝑌) ↔ ((𝑋 ∈ {𝑋} ∧ 𝑌𝐴) ∧ ⟨𝑋, 𝑌⟩2nd 𝑌))
20 br2ndeqg 7944 . . . . . . 7 ((𝑋𝑉𝑌𝐴) → (⟨𝑋, 𝑌⟩2nd 𝑌𝑌 = 𝑌))
2120anbi2d 630 . . . . . 6 ((𝑋𝑉𝑌𝐴) → (((𝑋 ∈ {𝑋} ∧ 𝑌𝐴) ∧ ⟨𝑋, 𝑌⟩2nd 𝑌) ↔ ((𝑋 ∈ {𝑋} ∧ 𝑌𝐴) ∧ 𝑌 = 𝑌)))
2219, 21bitrid 283 . . . . 5 ((𝑋𝑉𝑌𝐴) → ((⟨𝑋, 𝑌⟩ ∈ ({𝑋} × 𝐴) ∧ ⟨𝑋, 𝑌⟩2nd 𝑌) ↔ ((𝑋 ∈ {𝑋} ∧ 𝑌𝐴) ∧ 𝑌 = 𝑌)))
2317, 22bitrd 279 . . . 4 ((𝑋𝑉𝑌𝐴) → (⟨𝑋, 𝑌⟩(2nd ↾ ({𝑋} × 𝐴))𝑌 ↔ ((𝑋 ∈ {𝑋} ∧ 𝑌𝐴) ∧ 𝑌 = 𝑌)))
2415, 23bitrd 279 . . 3 ((𝑋𝑉𝑌𝐴) → (𝑌(2nd ↾ ({𝑋} × 𝐴))⟨𝑋, 𝑌⟩ ↔ ((𝑋 ∈ {𝑋} ∧ 𝑌𝐴) ∧ 𝑌 = 𝑌)))
2511, 24bitrd 279 . 2 ((𝑋𝑉𝑌𝐴) → (((2nd ↾ ({𝑋} × 𝐴))‘𝑌) = ⟨𝑋, 𝑌⟩ ↔ ((𝑋 ∈ {𝑋} ∧ 𝑌𝐴) ∧ 𝑌 = 𝑌)))
264, 25mpbird 257 1 ((𝑋𝑉𝑌𝐴) → ((2nd ↾ ({𝑋} × 𝐴))‘𝑌) = ⟨𝑋, 𝑌⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  {csn 4573  cop 4579   class class class wbr 5089   × cxp 5612  ccnv 5613  cres 5616   Fn wfn 6476  1-1-ontowf1o 6480  cfv 6481  2nd c2nd 7920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-1st 7921  df-2nd 7922
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator