| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lnxfr | Structured version Visualization version GIF version | ||
| Description: Transfer law for colinearity. Theorem 4.13 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
| Ref | Expression |
|---|---|
| tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
| tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| tgcolg.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
| lnxfr.r | ⊢ ∼ = (cgrG‘𝐺) |
| lnxfr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| lnxfr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| lnxfr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| lnxfr.1 | ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍)) |
| lnxfr.2 | ⊢ (𝜑 → 〈“𝑋𝑌𝑍”〉 ∼ 〈“𝐴𝐵𝐶”〉) |
| Ref | Expression |
|---|---|
| lnxfr | ⊢ (𝜑 → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglngval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | tglngval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 3 | tglngval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tglngval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝐺 ∈ TarskiG) |
| 6 | lnxfr.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝐴 ∈ 𝑃) |
| 8 | lnxfr.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 9 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝐶 ∈ 𝑃) |
| 10 | lnxfr.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝐵 ∈ 𝑃) |
| 12 | eqid 2729 | . . . 4 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 13 | lnxfr.r | . . . 4 ⊢ ∼ = (cgrG‘𝐺) | |
| 14 | tglngval.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 15 | 14 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝑋 ∈ 𝑃) |
| 16 | tglngval.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 17 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝑌 ∈ 𝑃) |
| 18 | tgcolg.z | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
| 19 | 18 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝑍 ∈ 𝑃) |
| 20 | lnxfr.2 | . . . . 5 ⊢ (𝜑 → 〈“𝑋𝑌𝑍”〉 ∼ 〈“𝐴𝐵𝐶”〉) | |
| 21 | 20 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 〈“𝑋𝑌𝑍”〉 ∼ 〈“𝐴𝐵𝐶”〉) |
| 22 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝑌 ∈ (𝑋𝐼𝑍)) | |
| 23 | 1, 12, 3, 13, 5, 15, 17, 19, 7, 11, 9, 21, 22 | tgbtwnxfr 28457 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝐵 ∈ (𝐴𝐼𝐶)) |
| 24 | 1, 2, 3, 5, 7, 9, 11, 23 | btwncolg1 28482 | . 2 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶)) |
| 25 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝐺 ∈ TarskiG) |
| 26 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝐴 ∈ 𝑃) |
| 27 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝐶 ∈ 𝑃) |
| 28 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝐵 ∈ 𝑃) |
| 29 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝑌 ∈ 𝑃) |
| 30 | 14 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝑋 ∈ 𝑃) |
| 31 | 18 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝑍 ∈ 𝑃) |
| 32 | 20 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 〈“𝑋𝑌𝑍”〉 ∼ 〈“𝐴𝐵𝐶”〉) |
| 33 | 1, 12, 3, 13, 25, 30, 29, 31, 26, 28, 27, 32 | cgr3swap12 28450 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 〈“𝑌𝑋𝑍”〉 ∼ 〈“𝐵𝐴𝐶”〉) |
| 34 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝑋 ∈ (𝑌𝐼𝑍)) | |
| 35 | 1, 12, 3, 13, 25, 29, 30, 31, 28, 26, 27, 33, 34 | tgbtwnxfr 28457 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝐴 ∈ (𝐵𝐼𝐶)) |
| 36 | 1, 2, 3, 25, 26, 27, 28, 35 | btwncolg2 28483 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶)) |
| 37 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝐺 ∈ TarskiG) |
| 38 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝐴 ∈ 𝑃) |
| 39 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝐶 ∈ 𝑃) |
| 40 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝐵 ∈ 𝑃) |
| 41 | 14 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝑋 ∈ 𝑃) |
| 42 | 18 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝑍 ∈ 𝑃) |
| 43 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝑌 ∈ 𝑃) |
| 44 | 20 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 〈“𝑋𝑌𝑍”〉 ∼ 〈“𝐴𝐵𝐶”〉) |
| 45 | 1, 12, 3, 13, 37, 41, 43, 42, 38, 40, 39, 44 | cgr3swap23 28451 | . . . 4 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 〈“𝑋𝑍𝑌”〉 ∼ 〈“𝐴𝐶𝐵”〉) |
| 46 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝑍 ∈ (𝑋𝐼𝑌)) | |
| 47 | 1, 12, 3, 13, 37, 41, 42, 43, 38, 39, 40, 45, 46 | tgbtwnxfr 28457 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝐶 ∈ (𝐴𝐼𝐵)) |
| 48 | 1, 2, 3, 37, 38, 39, 40, 47 | btwncolg3 28484 | . 2 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶)) |
| 49 | lnxfr.1 | . . 3 ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍)) | |
| 50 | 1, 2, 3, 4, 14, 18, 16 | tgcolg 28481 | . . 3 ⊢ (𝜑 → ((𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍) ↔ (𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌)))) |
| 51 | 49, 50 | mpbid 232 | . 2 ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌))) |
| 52 | 24, 36, 48, 51 | mpjao3dan 1434 | 1 ⊢ (𝜑 → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 〈“cs3 14808 Basecbs 17179 distcds 17229 TarskiGcstrkg 28354 Itvcitv 28360 LineGclng 28361 cgrGccgrg 28437 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-er 8671 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-hash 14296 df-word 14479 df-concat 14536 df-s1 14561 df-s2 14814 df-s3 14815 df-trkgc 28375 df-trkgb 28376 df-trkgcb 28377 df-trkg 28380 df-cgrg 28438 |
| This theorem is referenced by: symquadlem 28616 midexlem 28619 trgcopy 28731 |
| Copyright terms: Public domain | W3C validator |