![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lnxfr | Structured version Visualization version GIF version |
Description: Transfer law for colinearity. Theorem 4.13 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
Ref | Expression |
---|---|
tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
tgcolg.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
lnxfr.r | ⊢ ∼ = (cgrG‘𝐺) |
lnxfr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
lnxfr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
lnxfr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
lnxfr.1 | ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍)) |
lnxfr.2 | ⊢ (𝜑 → 〈“𝑋𝑌𝑍”〉 ∼ 〈“𝐴𝐵𝐶”〉) |
Ref | Expression |
---|---|
lnxfr | ⊢ (𝜑 → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglngval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tglngval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
3 | tglngval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tglngval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝐺 ∈ TarskiG) |
6 | lnxfr.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | 6 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝐴 ∈ 𝑃) |
8 | lnxfr.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
9 | 8 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝐶 ∈ 𝑃) |
10 | lnxfr.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
11 | 10 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝐵 ∈ 𝑃) |
12 | eqid 2826 | . . . 4 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
13 | lnxfr.r | . . . 4 ⊢ ∼ = (cgrG‘𝐺) | |
14 | tglngval.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
15 | 14 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝑋 ∈ 𝑃) |
16 | tglngval.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
17 | 16 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝑌 ∈ 𝑃) |
18 | tgcolg.z | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
19 | 18 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝑍 ∈ 𝑃) |
20 | lnxfr.2 | . . . . 5 ⊢ (𝜑 → 〈“𝑋𝑌𝑍”〉 ∼ 〈“𝐴𝐵𝐶”〉) | |
21 | 20 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 〈“𝑋𝑌𝑍”〉 ∼ 〈“𝐴𝐵𝐶”〉) |
22 | simpr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝑌 ∈ (𝑋𝐼𝑍)) | |
23 | 1, 12, 3, 13, 5, 15, 17, 19, 7, 11, 9, 21, 22 | tgbtwnxfr 25843 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝐵 ∈ (𝐴𝐼𝐶)) |
24 | 1, 2, 3, 5, 7, 9, 11, 23 | btwncolg1 25868 | . 2 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶)) |
25 | 4 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝐺 ∈ TarskiG) |
26 | 6 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝐴 ∈ 𝑃) |
27 | 8 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝐶 ∈ 𝑃) |
28 | 10 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝐵 ∈ 𝑃) |
29 | 16 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝑌 ∈ 𝑃) |
30 | 14 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝑋 ∈ 𝑃) |
31 | 18 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝑍 ∈ 𝑃) |
32 | 20 | adantr 474 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 〈“𝑋𝑌𝑍”〉 ∼ 〈“𝐴𝐵𝐶”〉) |
33 | 1, 12, 3, 13, 25, 30, 29, 31, 26, 28, 27, 32 | cgr3swap12 25836 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 〈“𝑌𝑋𝑍”〉 ∼ 〈“𝐵𝐴𝐶”〉) |
34 | simpr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝑋 ∈ (𝑌𝐼𝑍)) | |
35 | 1, 12, 3, 13, 25, 29, 30, 31, 28, 26, 27, 33, 34 | tgbtwnxfr 25843 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝐴 ∈ (𝐵𝐼𝐶)) |
36 | 1, 2, 3, 25, 26, 27, 28, 35 | btwncolg2 25869 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶)) |
37 | 4 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝐺 ∈ TarskiG) |
38 | 6 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝐴 ∈ 𝑃) |
39 | 8 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝐶 ∈ 𝑃) |
40 | 10 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝐵 ∈ 𝑃) |
41 | 14 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝑋 ∈ 𝑃) |
42 | 18 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝑍 ∈ 𝑃) |
43 | 16 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝑌 ∈ 𝑃) |
44 | 20 | adantr 474 | . . . . 5 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 〈“𝑋𝑌𝑍”〉 ∼ 〈“𝐴𝐵𝐶”〉) |
45 | 1, 12, 3, 13, 37, 41, 43, 42, 38, 40, 39, 44 | cgr3swap23 25837 | . . . 4 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 〈“𝑋𝑍𝑌”〉 ∼ 〈“𝐴𝐶𝐵”〉) |
46 | simpr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝑍 ∈ (𝑋𝐼𝑌)) | |
47 | 1, 12, 3, 13, 37, 41, 42, 43, 38, 39, 40, 45, 46 | tgbtwnxfr 25843 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝐶 ∈ (𝐴𝐼𝐵)) |
48 | 1, 2, 3, 37, 38, 39, 40, 47 | btwncolg3 25870 | . 2 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶)) |
49 | lnxfr.1 | . . 3 ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍)) | |
50 | 1, 2, 3, 4, 14, 18, 16 | tgcolg 25867 | . . 3 ⊢ (𝜑 → ((𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍) ↔ (𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌)))) |
51 | 49, 50 | mpbid 224 | . 2 ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌))) |
52 | 24, 36, 48, 51 | mpjao3dan 1562 | 1 ⊢ (𝜑 → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∨ wo 880 ∨ w3o 1112 = wceq 1658 ∈ wcel 2166 class class class wbr 4874 ‘cfv 6124 (class class class)co 6906 〈“cs3 13964 Basecbs 16223 distcds 16315 TarskiGcstrkg 25743 Itvcitv 25749 LineGclng 25750 cgrGccgrg 25823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-int 4699 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-1st 7429 df-2nd 7430 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-1o 7827 df-oadd 7831 df-er 8010 df-pm 8126 df-en 8224 df-dom 8225 df-sdom 8226 df-fin 8227 df-card 9079 df-cda 9306 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-nn 11352 df-2 11415 df-3 11416 df-n0 11620 df-xnn0 11692 df-z 11706 df-uz 11970 df-fz 12621 df-fzo 12762 df-hash 13412 df-word 13576 df-concat 13632 df-s1 13657 df-s2 13970 df-s3 13971 df-trkgc 25761 df-trkgb 25762 df-trkgcb 25763 df-trkg 25766 df-cgrg 25824 |
This theorem is referenced by: symquadlem 26002 midexlem 26005 trgcopy 26114 |
Copyright terms: Public domain | W3C validator |