MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnxfr Structured version   Visualization version   GIF version

Theorem lnxfr 28490
Description: Transfer law for colinearity. Theorem 4.13 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 27-Apr-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tgcolg.z (𝜑𝑍𝑃)
lnxfr.r = (cgrG‘𝐺)
lnxfr.a (𝜑𝐴𝑃)
lnxfr.b (𝜑𝐵𝑃)
lnxfr.c (𝜑𝐶𝑃)
lnxfr.1 (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍))
lnxfr.2 (𝜑 → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝐶”⟩)
Assertion
Ref Expression
lnxfr (𝜑 → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))

Proof of Theorem lnxfr
StepHypRef Expression
1 tglngval.p . . 3 𝑃 = (Base‘𝐺)
2 tglngval.l . . 3 𝐿 = (LineG‘𝐺)
3 tglngval.i . . 3 𝐼 = (Itv‘𝐺)
4 tglngval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54adantr 479 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝐺 ∈ TarskiG)
6 lnxfr.a . . . 4 (𝜑𝐴𝑃)
76adantr 479 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝐴𝑃)
8 lnxfr.c . . . 4 (𝜑𝐶𝑃)
98adantr 479 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝐶𝑃)
10 lnxfr.b . . . 4 (𝜑𝐵𝑃)
1110adantr 479 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝐵𝑃)
12 eqid 2726 . . . 4 (dist‘𝐺) = (dist‘𝐺)
13 lnxfr.r . . . 4 = (cgrG‘𝐺)
14 tglngval.x . . . . 5 (𝜑𝑋𝑃)
1514adantr 479 . . . 4 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝑋𝑃)
16 tglngval.y . . . . 5 (𝜑𝑌𝑃)
1716adantr 479 . . . 4 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝑌𝑃)
18 tgcolg.z . . . . 5 (𝜑𝑍𝑃)
1918adantr 479 . . . 4 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝑍𝑃)
20 lnxfr.2 . . . . 5 (𝜑 → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝐶”⟩)
2120adantr 479 . . . 4 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝐶”⟩)
22 simpr 483 . . . 4 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝑌 ∈ (𝑋𝐼𝑍))
231, 12, 3, 13, 5, 15, 17, 19, 7, 11, 9, 21, 22tgbtwnxfr 28454 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝐵 ∈ (𝐴𝐼𝐶))
241, 2, 3, 5, 7, 9, 11, 23btwncolg1 28479 . 2 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
254adantr 479 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝐺 ∈ TarskiG)
266adantr 479 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝐴𝑃)
278adantr 479 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝐶𝑃)
2810adantr 479 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝐵𝑃)
2916adantr 479 . . . 4 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝑌𝑃)
3014adantr 479 . . . 4 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝑋𝑃)
3118adantr 479 . . . 4 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝑍𝑃)
3220adantr 479 . . . . 5 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝐶”⟩)
331, 12, 3, 13, 25, 30, 29, 31, 26, 28, 27, 32cgr3swap12 28447 . . . 4 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → ⟨“𝑌𝑋𝑍”⟩ ⟨“𝐵𝐴𝐶”⟩)
34 simpr 483 . . . 4 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝑋 ∈ (𝑌𝐼𝑍))
351, 12, 3, 13, 25, 29, 30, 31, 28, 26, 27, 33, 34tgbtwnxfr 28454 . . 3 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → 𝐴 ∈ (𝐵𝐼𝐶))
361, 2, 3, 25, 26, 27, 28, 35btwncolg2 28480 . 2 ((𝜑𝑋 ∈ (𝑌𝐼𝑍)) → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
374adantr 479 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐺 ∈ TarskiG)
386adantr 479 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐴𝑃)
398adantr 479 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐶𝑃)
4010adantr 479 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐵𝑃)
4114adantr 479 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑋𝑃)
4218adantr 479 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑍𝑃)
4316adantr 479 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑌𝑃)
4420adantr 479 . . . . 5 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝐶”⟩)
451, 12, 3, 13, 37, 41, 43, 42, 38, 40, 39, 44cgr3swap23 28448 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → ⟨“𝑋𝑍𝑌”⟩ ⟨“𝐴𝐶𝐵”⟩)
46 simpr 483 . . . 4 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝑍 ∈ (𝑋𝐼𝑌))
471, 12, 3, 13, 37, 41, 42, 43, 38, 39, 40, 45, 46tgbtwnxfr 28454 . . 3 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → 𝐶 ∈ (𝐴𝐼𝐵))
481, 2, 3, 37, 38, 39, 40, 47btwncolg3 28481 . 2 ((𝜑𝑍 ∈ (𝑋𝐼𝑌)) → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
49 lnxfr.1 . . 3 (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍))
501, 2, 3, 4, 14, 18, 16tgcolg 28478 . . 3 (𝜑 → ((𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍) ↔ (𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌))))
5149, 50mpbid 231 . 2 (𝜑 → (𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌)))
5224, 36, 48, 51mpjao3dan 1429 1 (𝜑 → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 845  w3o 1083   = wceq 1534  wcel 2099   class class class wbr 5145  cfv 6546  (class class class)co 7416  ⟨“cs3 14846  Basecbs 17208  distcds 17270  TarskiGcstrkg 28351  Itvcitv 28357  LineGclng 28358  cgrGccgrg 28434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-oadd 8492  df-er 8726  df-pm 8850  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-dju 9937  df-card 9975  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-nn 12259  df-2 12321  df-3 12322  df-n0 12519  df-xnn0 12591  df-z 12605  df-uz 12869  df-fz 13533  df-fzo 13676  df-hash 14343  df-word 14518  df-concat 14574  df-s1 14599  df-s2 14852  df-s3 14853  df-trkgc 28372  df-trkgb 28373  df-trkgcb 28374  df-trkg 28377  df-cgrg 28435
This theorem is referenced by:  symquadlem  28613  midexlem  28616  trgcopy  28728
  Copyright terms: Public domain W3C validator