![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lnxfr | Structured version Visualization version GIF version |
Description: Transfer law for colinearity. Theorem 4.13 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
Ref | Expression |
---|---|
tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
tgcolg.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
lnxfr.r | ⊢ ∼ = (cgrG‘𝐺) |
lnxfr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
lnxfr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
lnxfr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
lnxfr.1 | ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍)) |
lnxfr.2 | ⊢ (𝜑 → 〈“𝑋𝑌𝑍”〉 ∼ 〈“𝐴𝐵𝐶”〉) |
Ref | Expression |
---|---|
lnxfr | ⊢ (𝜑 → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglngval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tglngval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
3 | tglngval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tglngval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝐺 ∈ TarskiG) |
6 | lnxfr.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝐴 ∈ 𝑃) |
8 | lnxfr.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
9 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝐶 ∈ 𝑃) |
10 | lnxfr.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝐵 ∈ 𝑃) |
12 | eqid 2735 | . . . 4 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
13 | lnxfr.r | . . . 4 ⊢ ∼ = (cgrG‘𝐺) | |
14 | tglngval.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
15 | 14 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝑋 ∈ 𝑃) |
16 | tglngval.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
17 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝑌 ∈ 𝑃) |
18 | tgcolg.z | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
19 | 18 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝑍 ∈ 𝑃) |
20 | lnxfr.2 | . . . . 5 ⊢ (𝜑 → 〈“𝑋𝑌𝑍”〉 ∼ 〈“𝐴𝐵𝐶”〉) | |
21 | 20 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 〈“𝑋𝑌𝑍”〉 ∼ 〈“𝐴𝐵𝐶”〉) |
22 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝑌 ∈ (𝑋𝐼𝑍)) | |
23 | 1, 12, 3, 13, 5, 15, 17, 19, 7, 11, 9, 21, 22 | tgbtwnxfr 28553 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝐵 ∈ (𝐴𝐼𝐶)) |
24 | 1, 2, 3, 5, 7, 9, 11, 23 | btwncolg1 28578 | . 2 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶)) |
25 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝐺 ∈ TarskiG) |
26 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝐴 ∈ 𝑃) |
27 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝐶 ∈ 𝑃) |
28 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝐵 ∈ 𝑃) |
29 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝑌 ∈ 𝑃) |
30 | 14 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝑋 ∈ 𝑃) |
31 | 18 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝑍 ∈ 𝑃) |
32 | 20 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 〈“𝑋𝑌𝑍”〉 ∼ 〈“𝐴𝐵𝐶”〉) |
33 | 1, 12, 3, 13, 25, 30, 29, 31, 26, 28, 27, 32 | cgr3swap12 28546 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 〈“𝑌𝑋𝑍”〉 ∼ 〈“𝐵𝐴𝐶”〉) |
34 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝑋 ∈ (𝑌𝐼𝑍)) | |
35 | 1, 12, 3, 13, 25, 29, 30, 31, 28, 26, 27, 33, 34 | tgbtwnxfr 28553 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → 𝐴 ∈ (𝐵𝐼𝐶)) |
36 | 1, 2, 3, 25, 26, 27, 28, 35 | btwncolg2 28579 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑌𝐼𝑍)) → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶)) |
37 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝐺 ∈ TarskiG) |
38 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝐴 ∈ 𝑃) |
39 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝐶 ∈ 𝑃) |
40 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝐵 ∈ 𝑃) |
41 | 14 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝑋 ∈ 𝑃) |
42 | 18 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝑍 ∈ 𝑃) |
43 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝑌 ∈ 𝑃) |
44 | 20 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 〈“𝑋𝑌𝑍”〉 ∼ 〈“𝐴𝐵𝐶”〉) |
45 | 1, 12, 3, 13, 37, 41, 43, 42, 38, 40, 39, 44 | cgr3swap23 28547 | . . . 4 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 〈“𝑋𝑍𝑌”〉 ∼ 〈“𝐴𝐶𝐵”〉) |
46 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝑍 ∈ (𝑋𝐼𝑌)) | |
47 | 1, 12, 3, 13, 37, 41, 42, 43, 38, 39, 40, 45, 46 | tgbtwnxfr 28553 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝐶 ∈ (𝐴𝐼𝐵)) |
48 | 1, 2, 3, 37, 38, 39, 40, 47 | btwncolg3 28580 | . 2 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶)) |
49 | lnxfr.1 | . . 3 ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍)) | |
50 | 1, 2, 3, 4, 14, 18, 16 | tgcolg 28577 | . . 3 ⊢ (𝜑 → ((𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍) ↔ (𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌)))) |
51 | 49, 50 | mpbid 232 | . 2 ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑌𝐼𝑍) ∨ 𝑍 ∈ (𝑋𝐼𝑌))) |
52 | 24, 36, 48, 51 | mpjao3dan 1431 | 1 ⊢ (𝜑 → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 〈“cs3 14878 Basecbs 17245 distcds 17307 TarskiGcstrkg 28450 Itvcitv 28456 LineGclng 28457 cgrGccgrg 28533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-oadd 8509 df-er 8744 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-xnn0 12598 df-z 12612 df-uz 12877 df-fz 13545 df-fzo 13692 df-hash 14367 df-word 14550 df-concat 14606 df-s1 14631 df-s2 14884 df-s3 14885 df-trkgc 28471 df-trkgb 28472 df-trkgcb 28473 df-trkg 28476 df-cgrg 28534 |
This theorem is referenced by: symquadlem 28712 midexlem 28715 trgcopy 28827 |
Copyright terms: Public domain | W3C validator |