| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgdim01ln | Structured version Visualization version GIF version | ||
| Description: In geometries of dimension less than two, then any three points are colinear. (Contributed by Thierry Arnoux, 27-Aug-2019.) |
| Ref | Expression |
|---|---|
| tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
| tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| tgcolg.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
| tgdim01ln.1 | ⊢ (𝜑 → ¬ 𝐺DimTarskiG≥2) |
| Ref | Expression |
|---|---|
| tgdim01ln | ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglngval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | tglngval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 3 | tglngval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tglngval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝐺 ∈ TarskiG) |
| 6 | tglngval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝑋 ∈ 𝑃) |
| 8 | tglngval.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 9 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝑌 ∈ 𝑃) |
| 10 | tgcolg.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝑍 ∈ 𝑃) |
| 12 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝑍 ∈ (𝑋𝐼𝑌)) | |
| 13 | 1, 2, 3, 5, 7, 9, 11, 12 | btwncolg1 28535 | . 2 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) |
| 14 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑍𝐼𝑌)) → 𝐺 ∈ TarskiG) |
| 15 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑍𝐼𝑌)) → 𝑋 ∈ 𝑃) |
| 16 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑍𝐼𝑌)) → 𝑌 ∈ 𝑃) |
| 17 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑍𝐼𝑌)) → 𝑍 ∈ 𝑃) |
| 18 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑍𝐼𝑌)) → 𝑋 ∈ (𝑍𝐼𝑌)) | |
| 19 | 1, 2, 3, 14, 15, 16, 17, 18 | btwncolg2 28536 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑍𝐼𝑌)) → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) |
| 20 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝐺 ∈ TarskiG) |
| 21 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝑋 ∈ 𝑃) |
| 22 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝑌 ∈ 𝑃) |
| 23 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝑍 ∈ 𝑃) |
| 24 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝑌 ∈ (𝑋𝐼𝑍)) | |
| 25 | 1, 2, 3, 20, 21, 22, 23, 24 | btwncolg3 28537 | . 2 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) |
| 26 | tgdim01ln.1 | . . 3 ⊢ (𝜑 → ¬ 𝐺DimTarskiG≥2) | |
| 27 | 1, 3, 4, 26, 6, 8, 10 | tgdim01 28487 | . 2 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) |
| 28 | 13, 19, 25, 27 | mpjao3dan 1434 | 1 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 2c2 12217 Basecbs 17155 TarskiGcstrkg 28407 DimTarskiG≥cstrkgld 28411 Itvcitv 28413 LineGclng 28414 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 df-trkgc 28428 df-trkgcb 28430 df-trkgld 28432 df-trkg 28433 |
| This theorem is referenced by: ncoltgdim2 28545 |
| Copyright terms: Public domain | W3C validator |