| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgdim01ln | Structured version Visualization version GIF version | ||
| Description: In geometries of dimension less than two, then any three points are colinear. (Contributed by Thierry Arnoux, 27-Aug-2019.) |
| Ref | Expression |
|---|---|
| tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
| tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| tgcolg.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
| tgdim01ln.1 | ⊢ (𝜑 → ¬ 𝐺DimTarskiG≥2) |
| Ref | Expression |
|---|---|
| tgdim01ln | ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglngval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | tglngval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 3 | tglngval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tglngval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝐺 ∈ TarskiG) |
| 6 | tglngval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝑋 ∈ 𝑃) |
| 8 | tglngval.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 9 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝑌 ∈ 𝑃) |
| 10 | tgcolg.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝑍 ∈ 𝑃) |
| 12 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → 𝑍 ∈ (𝑋𝐼𝑌)) | |
| 13 | 1, 2, 3, 5, 7, 9, 11, 12 | btwncolg1 28563 | . 2 ⊢ ((𝜑 ∧ 𝑍 ∈ (𝑋𝐼𝑌)) → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) |
| 14 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑍𝐼𝑌)) → 𝐺 ∈ TarskiG) |
| 15 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑍𝐼𝑌)) → 𝑋 ∈ 𝑃) |
| 16 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑍𝐼𝑌)) → 𝑌 ∈ 𝑃) |
| 17 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑍𝐼𝑌)) → 𝑍 ∈ 𝑃) |
| 18 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑍𝐼𝑌)) → 𝑋 ∈ (𝑍𝐼𝑌)) | |
| 19 | 1, 2, 3, 14, 15, 16, 17, 18 | btwncolg2 28564 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑍𝐼𝑌)) → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) |
| 20 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝐺 ∈ TarskiG) |
| 21 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝑋 ∈ 𝑃) |
| 22 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝑌 ∈ 𝑃) |
| 23 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝑍 ∈ 𝑃) |
| 24 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝑌 ∈ (𝑋𝐼𝑍)) | |
| 25 | 1, 2, 3, 20, 21, 22, 23, 24 | btwncolg3 28565 | . 2 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) |
| 26 | tgdim01ln.1 | . . 3 ⊢ (𝜑 → ¬ 𝐺DimTarskiG≥2) | |
| 27 | 1, 3, 4, 26, 6, 8, 10 | tgdim01 28515 | . 2 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) |
| 28 | 13, 19, 25, 27 | mpjao3dan 1434 | 1 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 2c2 12321 Basecbs 17247 TarskiGcstrkg 28435 DimTarskiG≥cstrkgld 28439 Itvcitv 28441 LineGclng 28442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-fzo 13695 df-trkgc 28456 df-trkgcb 28458 df-trkgld 28460 df-trkg 28461 |
| This theorem is referenced by: ncoltgdim2 28573 |
| Copyright terms: Public domain | W3C validator |