MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnconnln2 Structured version   Visualization version   GIF version

Theorem tgbtwnconnln2 28562
Description: Derive colinearity from betweenness. (Contributed by Thierry Arnoux, 17-May-2019.)
Hypotheses
Ref Expression
tgbtwnconn.p 𝑃 = (Base‘𝐺)
tgbtwnconn.i 𝐼 = (Itv‘𝐺)
tgbtwnconn.g (𝜑𝐺 ∈ TarskiG)
tgbtwnconn.a (𝜑𝐴𝑃)
tgbtwnconn.b (𝜑𝐵𝑃)
tgbtwnconn.c (𝜑𝐶𝑃)
tgbtwnconn.d (𝜑𝐷𝑃)
tgbtwnconnln1.l 𝐿 = (LineG‘𝐺)
tgbtwnconnln1.1 (𝜑𝐴𝐵)
tgbtwnconnln1.2 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgbtwnconnln1.3 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
Assertion
Ref Expression
tgbtwnconnln2 (𝜑 → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))

Proof of Theorem tgbtwnconnln2
StepHypRef Expression
1 tgbtwnconn.p . . 3 𝑃 = (Base‘𝐺)
2 tgbtwnconnln1.l . . 3 𝐿 = (LineG‘𝐺)
3 tgbtwnconn.i . . 3 𝐼 = (Itv‘𝐺)
4 tgbtwnconn.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐺 ∈ TarskiG)
6 tgbtwnconn.c . . . 4 (𝜑𝐶𝑃)
76adantr 480 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐶𝑃)
8 tgbtwnconn.d . . . 4 (𝜑𝐷𝑃)
98adantr 480 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐷𝑃)
10 tgbtwnconn.b . . . 4 (𝜑𝐵𝑃)
1110adantr 480 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐵𝑃)
12 simpr 484 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐶 ∈ (𝐵𝐼𝐷))
131, 2, 3, 5, 7, 9, 11, 12btwncolg2 28537 . 2 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
144adantr 480 . . 3 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐺 ∈ TarskiG)
156adantr 480 . . 3 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐶𝑃)
168adantr 480 . . 3 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐷𝑃)
1710adantr 480 . . 3 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐵𝑃)
18 eqid 2729 . . . 4 (dist‘𝐺) = (dist‘𝐺)
19 simpr 484 . . . 4 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐷 ∈ (𝐵𝐼𝐶))
201, 18, 3, 14, 17, 16, 15, 19tgbtwncom 28469 . . 3 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐷 ∈ (𝐶𝐼𝐵))
211, 2, 3, 14, 15, 16, 17, 20btwncolg3 28538 . 2 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
22 tgbtwnconn.a . . 3 (𝜑𝐴𝑃)
23 tgbtwnconnln1.1 . . 3 (𝜑𝐴𝐵)
24 tgbtwnconnln1.2 . . 3 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
25 tgbtwnconnln1.3 . . 3 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
261, 3, 4, 22, 10, 6, 8, 23, 24, 25tgbtwnconn2 28557 . 2 (𝜑 → (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶)))
2713, 21, 26mpjaodan 960 1 (𝜑 → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  cfv 6499  (class class class)co 7369  Basecbs 17156  distcds 17206  TarskiGcstrkg 28408  Itvcitv 28414  LineGclng 28415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9832  df-card 9870  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-nn 12165  df-2 12227  df-3 12228  df-n0 12421  df-xnn0 12494  df-z 12508  df-uz 12772  df-fz 13447  df-fzo 13594  df-hash 14274  df-word 14457  df-concat 14514  df-s1 14539  df-s2 14791  df-s3 14792  df-trkgc 28429  df-trkgb 28430  df-trkgcb 28431  df-trkg 28434  df-cgrg 28492
This theorem is referenced by:  tglineeltr  28612
  Copyright terms: Public domain W3C validator