MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnconnln2 Structured version   Visualization version   GIF version

Theorem tgbtwnconnln2 26459
Description: Derive colinearity from betweenness. (Contributed by Thierry Arnoux, 17-May-2019.)
Hypotheses
Ref Expression
tgbtwnconn.p 𝑃 = (Base‘𝐺)
tgbtwnconn.i 𝐼 = (Itv‘𝐺)
tgbtwnconn.g (𝜑𝐺 ∈ TarskiG)
tgbtwnconn.a (𝜑𝐴𝑃)
tgbtwnconn.b (𝜑𝐵𝑃)
tgbtwnconn.c (𝜑𝐶𝑃)
tgbtwnconn.d (𝜑𝐷𝑃)
tgbtwnconnln1.l 𝐿 = (LineG‘𝐺)
tgbtwnconnln1.1 (𝜑𝐴𝐵)
tgbtwnconnln1.2 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgbtwnconnln1.3 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
Assertion
Ref Expression
tgbtwnconnln2 (𝜑 → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))

Proof of Theorem tgbtwnconnln2
StepHypRef Expression
1 tgbtwnconn.p . . 3 𝑃 = (Base‘𝐺)
2 tgbtwnconnln1.l . . 3 𝐿 = (LineG‘𝐺)
3 tgbtwnconn.i . . 3 𝐼 = (Itv‘𝐺)
4 tgbtwnconn.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54adantr 485 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐺 ∈ TarskiG)
6 tgbtwnconn.c . . . 4 (𝜑𝐶𝑃)
76adantr 485 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐶𝑃)
8 tgbtwnconn.d . . . 4 (𝜑𝐷𝑃)
98adantr 485 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐷𝑃)
10 tgbtwnconn.b . . . 4 (𝜑𝐵𝑃)
1110adantr 485 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐵𝑃)
12 simpr 489 . . 3 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → 𝐶 ∈ (𝐵𝐼𝐷))
131, 2, 3, 5, 7, 9, 11, 12btwncolg2 26434 . 2 ((𝜑𝐶 ∈ (𝐵𝐼𝐷)) → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
144adantr 485 . . 3 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐺 ∈ TarskiG)
156adantr 485 . . 3 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐶𝑃)
168adantr 485 . . 3 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐷𝑃)
1710adantr 485 . . 3 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐵𝑃)
18 eqid 2759 . . . 4 (dist‘𝐺) = (dist‘𝐺)
19 simpr 489 . . . 4 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐷 ∈ (𝐵𝐼𝐶))
201, 18, 3, 14, 17, 16, 15, 19tgbtwncom 26366 . . 3 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → 𝐷 ∈ (𝐶𝐼𝐵))
211, 2, 3, 14, 15, 16, 17, 20btwncolg3 26435 . 2 ((𝜑𝐷 ∈ (𝐵𝐼𝐶)) → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
22 tgbtwnconn.a . . 3 (𝜑𝐴𝑃)
23 tgbtwnconnln1.1 . . 3 (𝜑𝐴𝐵)
24 tgbtwnconnln1.2 . . 3 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
25 tgbtwnconnln1.3 . . 3 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
261, 3, 4, 22, 10, 6, 8, 23, 24, 25tgbtwnconn2 26454 . 2 (𝜑 → (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶)))
2713, 21, 26mpjaodan 957 1 (𝜑 → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400  wo 845   = wceq 1539  wcel 2112  wne 2949  cfv 6328  (class class class)co 7143  Basecbs 16526  distcds 16617  TarskiGcstrkg 26308  Itvcitv 26314  LineGclng 26315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-int 4832  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-pm 8412  df-en 8521  df-dom 8522  df-sdom 8523  df-fin 8524  df-dju 9348  df-card 9386  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-2 11722  df-3 11723  df-n0 11920  df-xnn0 11992  df-z 12006  df-uz 12268  df-fz 12925  df-fzo 13068  df-hash 13726  df-word 13899  df-concat 13955  df-s1 13982  df-s2 14242  df-s3 14243  df-trkgc 26326  df-trkgb 26327  df-trkgcb 26328  df-trkg 26331  df-cgrg 26389
This theorem is referenced by:  tglineeltr  26509
  Copyright terms: Public domain W3C validator