Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cfsetsnfsetf1o Structured version   Visualization version   GIF version

Theorem cfsetsnfsetf1o 47010
Description: The mapping of the class of singleton functions into the class of constant functions is a bijection. (Contributed by AV, 14-Sep-2024.)
Hypotheses
Ref Expression
cfsetsnfsetfv.f 𝐹 = {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)}
cfsetsnfsetfv.g 𝐺 = {𝑥𝑥:{𝑌}⟶𝐵}
cfsetsnfsetfv.h 𝐻 = (𝑔𝐺 ↦ (𝑎𝐴 ↦ (𝑔𝑌)))
Assertion
Ref Expression
cfsetsnfsetf1o ((𝐴𝑉𝑌𝐴) → 𝐻:𝐺1-1-onto𝐹)
Distinct variable groups:   𝐴,𝑎,𝑔   𝑔,𝐺   𝑔,𝑉   𝑔,𝑌   𝐴,𝑏,𝑓,𝑧   𝑥,𝐵   𝐵,𝑎,𝑏,𝑓   𝑔,𝐹   𝐺,𝑎,𝑏,𝑧   𝑉,𝑎,𝑏,𝑧   𝑌,𝑎,𝑏,𝑓,𝑧   𝑥,𝑌,𝑔,𝑏   𝑓,𝑔,𝑧   𝑧,𝐵   𝑥,𝑏,𝑧   𝐻,𝑏
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑔)   𝐹(𝑥,𝑧,𝑓,𝑎,𝑏)   𝐺(𝑥,𝑓)   𝐻(𝑥,𝑧,𝑓,𝑔,𝑎)   𝑉(𝑥,𝑓)

Proof of Theorem cfsetsnfsetf1o
StepHypRef Expression
1 cfsetsnfsetfv.f . . 3 𝐹 = {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)}
2 cfsetsnfsetfv.g . . 3 𝐺 = {𝑥𝑥:{𝑌}⟶𝐵}
3 cfsetsnfsetfv.h . . 3 𝐻 = (𝑔𝐺 ↦ (𝑎𝐴 ↦ (𝑔𝑌)))
41, 2, 3cfsetsnfsetf1 47008 . 2 ((𝐴𝑉𝑌𝐴) → 𝐻:𝐺1-1𝐹)
51, 2, 3cfsetsnfsetfo 47009 . 2 ((𝐴𝑉𝑌𝐴) → 𝐻:𝐺onto𝐹)
6 df-f1o 6569 . 2 (𝐻:𝐺1-1-onto𝐹 ↔ (𝐻:𝐺1-1𝐹𝐻:𝐺onto𝐹))
74, 5, 6sylanbrc 583 1 ((𝐴𝑉𝑌𝐴) → 𝐻:𝐺1-1-onto𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  {cab 2711  wral 3058  wrex 3067  {csn 4630  cmpt 5230  wf 6558  1-1wf1 6559  ontowfo 6560  1-1-ontowf1o 6561  cfv 6562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570
This theorem is referenced by:  fsetprcnexALT  47011
  Copyright terms: Public domain W3C validator