Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cfsetsnfsetf1o | Structured version Visualization version GIF version |
Description: The mapping of the class of singleton functions into the class of constant functions is a bijection. (Contributed by AV, 14-Sep-2024.) |
Ref | Expression |
---|---|
cfsetsnfsetfv.f | ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} |
cfsetsnfsetfv.g | ⊢ 𝐺 = {𝑥 ∣ 𝑥:{𝑌}⟶𝐵} |
cfsetsnfsetfv.h | ⊢ 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) |
Ref | Expression |
---|---|
cfsetsnfsetf1o | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → 𝐻:𝐺–1-1-onto→𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfsetsnfsetfv.f | . . 3 ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} | |
2 | cfsetsnfsetfv.g | . . 3 ⊢ 𝐺 = {𝑥 ∣ 𝑥:{𝑌}⟶𝐵} | |
3 | cfsetsnfsetfv.h | . . 3 ⊢ 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) | |
4 | 1, 2, 3 | cfsetsnfsetf1 44531 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → 𝐻:𝐺–1-1→𝐹) |
5 | 1, 2, 3 | cfsetsnfsetfo 44532 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → 𝐻:𝐺–onto→𝐹) |
6 | df-f1o 6433 | . 2 ⊢ (𝐻:𝐺–1-1-onto→𝐹 ↔ (𝐻:𝐺–1-1→𝐹 ∧ 𝐻:𝐺–onto→𝐹)) | |
7 | 4, 5, 6 | sylanbrc 583 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → 𝐻:𝐺–1-1-onto→𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 ∀wral 3064 ∃wrex 3065 {csn 4561 ↦ cmpt 5156 ⟶wf 6422 –1-1→wf1 6423 –onto→wfo 6424 –1-1-onto→wf1o 6425 ‘cfv 6426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pr 5350 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-id 5484 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 |
This theorem is referenced by: fsetprcnexALT 44534 |
Copyright terms: Public domain | W3C validator |