Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > chrdvds | Structured version Visualization version GIF version |
Description: The ℤ ring homomorphism is zero only at multiples of the characteristic. (Contributed by Mario Carneiro, 23-Sep-2015.) |
Ref | Expression |
---|---|
chrcl.c | ⊢ 𝐶 = (chr‘𝑅) |
chrid.l | ⊢ 𝐿 = (ℤRHom‘𝑅) |
chrid.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
chrdvds | ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → (𝐶 ∥ 𝑁 ↔ (𝐿‘𝑁) = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . . 5 ⊢ (od‘𝑅) = (od‘𝑅) | |
2 | eqid 2736 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
3 | chrcl.c | . . . . 5 ⊢ 𝐶 = (chr‘𝑅) | |
4 | 1, 2, 3 | chrval 20778 | . . . 4 ⊢ ((od‘𝑅)‘(1r‘𝑅)) = 𝐶 |
5 | 4 | breq1i 5088 | . . 3 ⊢ (((od‘𝑅)‘(1r‘𝑅)) ∥ 𝑁 ↔ 𝐶 ∥ 𝑁) |
6 | ringgrp 19837 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
7 | 6 | adantr 482 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → 𝑅 ∈ Grp) |
8 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
9 | 8, 2 | ringidcl 19856 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
10 | 9 | adantr 482 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → (1r‘𝑅) ∈ (Base‘𝑅)) |
11 | simpr 486 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
12 | eqid 2736 | . . . . 5 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
13 | chrid.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
14 | 8, 1, 12, 13 | oddvds 19204 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ (1r‘𝑅) ∈ (Base‘𝑅) ∧ 𝑁 ∈ ℤ) → (((od‘𝑅)‘(1r‘𝑅)) ∥ 𝑁 ↔ (𝑁(.g‘𝑅)(1r‘𝑅)) = 0 )) |
15 | 7, 10, 11, 14 | syl3anc 1371 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → (((od‘𝑅)‘(1r‘𝑅)) ∥ 𝑁 ↔ (𝑁(.g‘𝑅)(1r‘𝑅)) = 0 )) |
16 | 5, 15 | bitr3id 285 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → (𝐶 ∥ 𝑁 ↔ (𝑁(.g‘𝑅)(1r‘𝑅)) = 0 )) |
17 | chrid.l | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
18 | 17, 12, 2 | zrhmulg 20760 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → (𝐿‘𝑁) = (𝑁(.g‘𝑅)(1r‘𝑅))) |
19 | 18 | eqeq1d 2738 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → ((𝐿‘𝑁) = 0 ↔ (𝑁(.g‘𝑅)(1r‘𝑅)) = 0 )) |
20 | 16, 19 | bitr4d 282 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → (𝐶 ∥ 𝑁 ↔ (𝐿‘𝑁) = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 class class class wbr 5081 ‘cfv 6458 (class class class)co 7307 ℤcz 12369 ∥ cdvds 16012 Basecbs 16961 0gc0g 17199 Grpcgrp 18626 .gcmg 18749 odcod 19181 1rcur 19786 Ringcrg 19832 ℤRHomczrh 20750 chrcchr 20752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 ax-pre-sup 10999 ax-addf 11000 ax-mulf 11001 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-map 8648 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-sup 9249 df-inf 9250 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-7 12091 df-8 12092 df-9 12093 df-n0 12284 df-z 12370 df-dec 12488 df-uz 12633 df-rp 12781 df-fz 13290 df-fl 13562 df-mod 13640 df-seq 13772 df-exp 13833 df-cj 14859 df-re 14860 df-im 14861 df-sqrt 14995 df-abs 14996 df-dvds 16013 df-struct 16897 df-sets 16914 df-slot 16932 df-ndx 16944 df-base 16962 df-ress 16991 df-plusg 17024 df-mulr 17025 df-starv 17026 df-tset 17030 df-ple 17031 df-ds 17033 df-unif 17034 df-0g 17201 df-mgm 18375 df-sgrp 18424 df-mnd 18435 df-mhm 18479 df-grp 18629 df-minusg 18630 df-sbg 18631 df-mulg 18750 df-subg 18801 df-ghm 18881 df-od 19185 df-cmn 19437 df-mgp 19770 df-ur 19787 df-ring 19834 df-cring 19835 df-rnghom 20008 df-subrg 20071 df-cnfld 20647 df-zring 20720 df-zrh 20754 df-chr 20756 |
This theorem is referenced by: chrnzr 20783 chrrhm 20784 domnchr 20785 znchr 20819 |
Copyright terms: Public domain | W3C validator |