| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chrdvds | Structured version Visualization version GIF version | ||
| Description: The ℤ ring homomorphism is zero only at multiples of the characteristic. (Contributed by Mario Carneiro, 23-Sep-2015.) |
| Ref | Expression |
|---|---|
| chrcl.c | ⊢ 𝐶 = (chr‘𝑅) |
| chrid.l | ⊢ 𝐿 = (ℤRHom‘𝑅) |
| chrid.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| chrdvds | ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → (𝐶 ∥ 𝑁 ↔ (𝐿‘𝑁) = 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . 5 ⊢ (od‘𝑅) = (od‘𝑅) | |
| 2 | eqid 2731 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 3 | chrcl.c | . . . . 5 ⊢ 𝐶 = (chr‘𝑅) | |
| 4 | 1, 2, 3 | chrval 21466 | . . . 4 ⊢ ((od‘𝑅)‘(1r‘𝑅)) = 𝐶 |
| 5 | 4 | breq1i 5100 | . . 3 ⊢ (((od‘𝑅)‘(1r‘𝑅)) ∥ 𝑁 ↔ 𝐶 ∥ 𝑁) |
| 6 | ringgrp 20162 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → 𝑅 ∈ Grp) |
| 8 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 9 | 8, 2 | ringidcl 20189 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 11 | simpr 484 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
| 12 | eqid 2731 | . . . . 5 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
| 13 | chrid.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 14 | 8, 1, 12, 13 | oddvds 19465 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ (1r‘𝑅) ∈ (Base‘𝑅) ∧ 𝑁 ∈ ℤ) → (((od‘𝑅)‘(1r‘𝑅)) ∥ 𝑁 ↔ (𝑁(.g‘𝑅)(1r‘𝑅)) = 0 )) |
| 15 | 7, 10, 11, 14 | syl3anc 1373 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → (((od‘𝑅)‘(1r‘𝑅)) ∥ 𝑁 ↔ (𝑁(.g‘𝑅)(1r‘𝑅)) = 0 )) |
| 16 | 5, 15 | bitr3id 285 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → (𝐶 ∥ 𝑁 ↔ (𝑁(.g‘𝑅)(1r‘𝑅)) = 0 )) |
| 17 | chrid.l | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
| 18 | 17, 12, 2 | zrhmulg 21452 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → (𝐿‘𝑁) = (𝑁(.g‘𝑅)(1r‘𝑅))) |
| 19 | 18 | eqeq1d 2733 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → ((𝐿‘𝑁) = 0 ↔ (𝑁(.g‘𝑅)(1r‘𝑅)) = 0 )) |
| 20 | 16, 19 | bitr4d 282 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → (𝐶 ∥ 𝑁 ↔ (𝐿‘𝑁) = 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5093 ‘cfv 6487 (class class class)co 7352 ℤcz 12474 ∥ cdvds 16169 Basecbs 17126 0gc0g 17349 Grpcgrp 18852 .gcmg 18986 odcod 19442 1rcur 20105 Ringcrg 20157 ℤRHomczrh 21442 chrcchr 21444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 ax-pre-sup 11090 ax-addf 11091 ax-mulf 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9332 df-inf 9333 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-div 11781 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-9 12201 df-n0 12388 df-z 12475 df-dec 12595 df-uz 12739 df-rp 12897 df-fz 13414 df-fl 13702 df-mod 13780 df-seq 13915 df-exp 13975 df-cj 15012 df-re 15013 df-im 15014 df-sqrt 15148 df-abs 15149 df-dvds 16170 df-struct 17064 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-ress 17148 df-plusg 17180 df-mulr 17181 df-starv 17182 df-tset 17186 df-ple 17187 df-ds 17189 df-unif 17190 df-0g 17351 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-mhm 18697 df-grp 18855 df-minusg 18856 df-sbg 18857 df-mulg 18987 df-subg 19042 df-ghm 19131 df-od 19446 df-cmn 19700 df-abl 19701 df-mgp 20065 df-rng 20077 df-ur 20106 df-ring 20159 df-cring 20160 df-rhm 20396 df-subrng 20467 df-subrg 20491 df-cnfld 21298 df-zring 21390 df-zrh 21446 df-chr 21448 |
| This theorem is referenced by: fermltlchr 21472 chrnzr 21473 chrrhm 21474 domnchr 21475 znchr 21505 zndvdchrrhm 42071 aks6d1c5lem1 42235 |
| Copyright terms: Public domain | W3C validator |