| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chrcong | Structured version Visualization version GIF version | ||
| Description: If two integers are congruent relative to the ring characteristic, their images in the ring are the same. (Contributed by Mario Carneiro, 24-Sep-2015.) |
| Ref | Expression |
|---|---|
| chrcl.c | ⊢ 𝐶 = (chr‘𝑅) |
| chrid.l | ⊢ 𝐿 = (ℤRHom‘𝑅) |
| chrid.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| chrcong | ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐶 ∥ (𝑀 − 𝑁) ↔ (𝐿‘𝑀) = (𝐿‘𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . . 5 ⊢ (od‘𝑅) = (od‘𝑅) | |
| 2 | eqid 2736 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 3 | chrcl.c | . . . . 5 ⊢ 𝐶 = (chr‘𝑅) | |
| 4 | 1, 2, 3 | chrval 21489 | . . . 4 ⊢ ((od‘𝑅)‘(1r‘𝑅)) = 𝐶 |
| 5 | 4 | breq1i 5131 | . . 3 ⊢ (((od‘𝑅)‘(1r‘𝑅)) ∥ (𝑀 − 𝑁) ↔ 𝐶 ∥ (𝑀 − 𝑁)) |
| 6 | ringgrp 20203 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 7 | 6 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑅 ∈ Grp) |
| 8 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 9 | 8, 2 | ringidcl 20230 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 10 | 9 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 11 | simp2 1137 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ) | |
| 12 | simp3 1138 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
| 13 | eqid 2736 | . . . . 5 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
| 14 | chrid.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 15 | 8, 1, 13, 14 | odcong 19535 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ (1r‘𝑅) ∈ (Base‘𝑅) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (((od‘𝑅)‘(1r‘𝑅)) ∥ (𝑀 − 𝑁) ↔ (𝑀(.g‘𝑅)(1r‘𝑅)) = (𝑁(.g‘𝑅)(1r‘𝑅)))) |
| 16 | 7, 10, 11, 12, 15 | syl112anc 1376 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((od‘𝑅)‘(1r‘𝑅)) ∥ (𝑀 − 𝑁) ↔ (𝑀(.g‘𝑅)(1r‘𝑅)) = (𝑁(.g‘𝑅)(1r‘𝑅)))) |
| 17 | 5, 16 | bitr3id 285 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐶 ∥ (𝑀 − 𝑁) ↔ (𝑀(.g‘𝑅)(1r‘𝑅)) = (𝑁(.g‘𝑅)(1r‘𝑅)))) |
| 18 | chrid.l | . . . . 5 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
| 19 | 18, 13, 2 | zrhmulg 21475 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ) → (𝐿‘𝑀) = (𝑀(.g‘𝑅)(1r‘𝑅))) |
| 20 | 19 | 3adant3 1132 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐿‘𝑀) = (𝑀(.g‘𝑅)(1r‘𝑅))) |
| 21 | 18, 13, 2 | zrhmulg 21475 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → (𝐿‘𝑁) = (𝑁(.g‘𝑅)(1r‘𝑅))) |
| 22 | 21 | 3adant2 1131 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐿‘𝑁) = (𝑁(.g‘𝑅)(1r‘𝑅))) |
| 23 | 20, 22 | eqeq12d 2752 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐿‘𝑀) = (𝐿‘𝑁) ↔ (𝑀(.g‘𝑅)(1r‘𝑅)) = (𝑁(.g‘𝑅)(1r‘𝑅)))) |
| 24 | 17, 23 | bitr4d 282 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐶 ∥ (𝑀 − 𝑁) ↔ (𝐿‘𝑀) = (𝐿‘𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 − cmin 11471 ℤcz 12593 ∥ cdvds 16277 Basecbs 17233 0gc0g 17458 Grpcgrp 18921 .gcmg 19055 odcod 19510 1rcur 20146 Ringcrg 20198 ℤRHomczrh 21465 chrcchr 21467 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 ax-mulf 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-inf 9460 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-rp 13014 df-fz 13530 df-fl 13814 df-mod 13892 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-dvds 16278 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mulg 19056 df-subg 19111 df-ghm 19201 df-od 19514 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-cring 20201 df-rhm 20437 df-subrng 20511 df-subrg 20535 df-cnfld 21321 df-zring 21413 df-zrh 21469 df-chr 21471 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |