| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chrcong | Structured version Visualization version GIF version | ||
| Description: If two integers are congruent relative to the ring characteristic, their images in the ring are the same. (Contributed by Mario Carneiro, 24-Sep-2015.) |
| Ref | Expression |
|---|---|
| chrcl.c | ⊢ 𝐶 = (chr‘𝑅) |
| chrid.l | ⊢ 𝐿 = (ℤRHom‘𝑅) |
| chrid.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| chrcong | ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐶 ∥ (𝑀 − 𝑁) ↔ (𝐿‘𝑀) = (𝐿‘𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . 5 ⊢ (od‘𝑅) = (od‘𝑅) | |
| 2 | eqid 2731 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 3 | chrcl.c | . . . . 5 ⊢ 𝐶 = (chr‘𝑅) | |
| 4 | 1, 2, 3 | chrval 21458 | . . . 4 ⊢ ((od‘𝑅)‘(1r‘𝑅)) = 𝐶 |
| 5 | 4 | breq1i 5098 | . . 3 ⊢ (((od‘𝑅)‘(1r‘𝑅)) ∥ (𝑀 − 𝑁) ↔ 𝐶 ∥ (𝑀 − 𝑁)) |
| 6 | ringgrp 20154 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 7 | 6 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑅 ∈ Grp) |
| 8 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 9 | 8, 2 | ringidcl 20181 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 10 | 9 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 11 | simp2 1137 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ) | |
| 12 | simp3 1138 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
| 13 | eqid 2731 | . . . . 5 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
| 14 | chrid.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 15 | 8, 1, 13, 14 | odcong 19459 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ (1r‘𝑅) ∈ (Base‘𝑅) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (((od‘𝑅)‘(1r‘𝑅)) ∥ (𝑀 − 𝑁) ↔ (𝑀(.g‘𝑅)(1r‘𝑅)) = (𝑁(.g‘𝑅)(1r‘𝑅)))) |
| 16 | 7, 10, 11, 12, 15 | syl112anc 1376 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((od‘𝑅)‘(1r‘𝑅)) ∥ (𝑀 − 𝑁) ↔ (𝑀(.g‘𝑅)(1r‘𝑅)) = (𝑁(.g‘𝑅)(1r‘𝑅)))) |
| 17 | 5, 16 | bitr3id 285 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐶 ∥ (𝑀 − 𝑁) ↔ (𝑀(.g‘𝑅)(1r‘𝑅)) = (𝑁(.g‘𝑅)(1r‘𝑅)))) |
| 18 | chrid.l | . . . . 5 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
| 19 | 18, 13, 2 | zrhmulg 21444 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ) → (𝐿‘𝑀) = (𝑀(.g‘𝑅)(1r‘𝑅))) |
| 20 | 19 | 3adant3 1132 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐿‘𝑀) = (𝑀(.g‘𝑅)(1r‘𝑅))) |
| 21 | 18, 13, 2 | zrhmulg 21444 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → (𝐿‘𝑁) = (𝑁(.g‘𝑅)(1r‘𝑅))) |
| 22 | 21 | 3adant2 1131 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐿‘𝑁) = (𝑁(.g‘𝑅)(1r‘𝑅))) |
| 23 | 20, 22 | eqeq12d 2747 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐿‘𝑀) = (𝐿‘𝑁) ↔ (𝑀(.g‘𝑅)(1r‘𝑅)) = (𝑁(.g‘𝑅)(1r‘𝑅)))) |
| 24 | 17, 23 | bitr4d 282 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐶 ∥ (𝑀 − 𝑁) ↔ (𝐿‘𝑀) = (𝐿‘𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 − cmin 11341 ℤcz 12465 ∥ cdvds 16160 Basecbs 17117 0gc0g 17340 Grpcgrp 18843 .gcmg 18977 odcod 19434 1rcur 20097 Ringcrg 20149 ℤRHomczrh 21434 chrcchr 21436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 ax-addf 11082 ax-mulf 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-rp 12888 df-fz 13405 df-fl 13693 df-mod 13771 df-seq 13906 df-exp 13966 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-dvds 16161 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-starv 17173 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-mhm 18688 df-grp 18846 df-minusg 18847 df-sbg 18848 df-mulg 18978 df-subg 19033 df-ghm 19123 df-od 19438 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-rhm 20388 df-subrng 20459 df-subrg 20483 df-cnfld 21290 df-zring 21382 df-zrh 21438 df-chr 21440 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |