Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > chrcong | Structured version Visualization version GIF version |
Description: If two integers are congruent relative to the ring characteristic, their images in the ring are the same. (Contributed by Mario Carneiro, 24-Sep-2015.) |
Ref | Expression |
---|---|
chrcl.c | ⊢ 𝐶 = (chr‘𝑅) |
chrid.l | ⊢ 𝐿 = (ℤRHom‘𝑅) |
chrid.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
chrcong | ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐶 ∥ (𝑀 − 𝑁) ↔ (𝐿‘𝑀) = (𝐿‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . 5 ⊢ (od‘𝑅) = (od‘𝑅) | |
2 | eqid 2738 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
3 | chrcl.c | . . . . 5 ⊢ 𝐶 = (chr‘𝑅) | |
4 | 1, 2, 3 | chrval 20344 | . . . 4 ⊢ ((od‘𝑅)‘(1r‘𝑅)) = 𝐶 |
5 | 4 | breq1i 5037 | . . 3 ⊢ (((od‘𝑅)‘(1r‘𝑅)) ∥ (𝑀 − 𝑁) ↔ 𝐶 ∥ (𝑀 − 𝑁)) |
6 | ringgrp 19421 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
7 | 6 | 3ad2ant1 1134 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑅 ∈ Grp) |
8 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
9 | 8, 2 | ringidcl 19440 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
10 | 9 | 3ad2ant1 1134 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1r‘𝑅) ∈ (Base‘𝑅)) |
11 | simp2 1138 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ) | |
12 | simp3 1139 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
13 | eqid 2738 | . . . . 5 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
14 | chrid.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
15 | 8, 1, 13, 14 | odcong 18795 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ (1r‘𝑅) ∈ (Base‘𝑅) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (((od‘𝑅)‘(1r‘𝑅)) ∥ (𝑀 − 𝑁) ↔ (𝑀(.g‘𝑅)(1r‘𝑅)) = (𝑁(.g‘𝑅)(1r‘𝑅)))) |
16 | 7, 10, 11, 12, 15 | syl112anc 1375 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((od‘𝑅)‘(1r‘𝑅)) ∥ (𝑀 − 𝑁) ↔ (𝑀(.g‘𝑅)(1r‘𝑅)) = (𝑁(.g‘𝑅)(1r‘𝑅)))) |
17 | 5, 16 | bitr3id 288 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐶 ∥ (𝑀 − 𝑁) ↔ (𝑀(.g‘𝑅)(1r‘𝑅)) = (𝑁(.g‘𝑅)(1r‘𝑅)))) |
18 | chrid.l | . . . . 5 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
19 | 18, 13, 2 | zrhmulg 20330 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ) → (𝐿‘𝑀) = (𝑀(.g‘𝑅)(1r‘𝑅))) |
20 | 19 | 3adant3 1133 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐿‘𝑀) = (𝑀(.g‘𝑅)(1r‘𝑅))) |
21 | 18, 13, 2 | zrhmulg 20330 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → (𝐿‘𝑁) = (𝑁(.g‘𝑅)(1r‘𝑅))) |
22 | 21 | 3adant2 1132 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐿‘𝑁) = (𝑁(.g‘𝑅)(1r‘𝑅))) |
23 | 20, 22 | eqeq12d 2754 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐿‘𝑀) = (𝐿‘𝑁) ↔ (𝑀(.g‘𝑅)(1r‘𝑅)) = (𝑁(.g‘𝑅)(1r‘𝑅)))) |
24 | 17, 23 | bitr4d 285 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐶 ∥ (𝑀 − 𝑁) ↔ (𝐿‘𝑀) = (𝐿‘𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 class class class wbr 5030 ‘cfv 6339 (class class class)co 7170 − cmin 10948 ℤcz 12062 ∥ cdvds 15699 Basecbs 16586 0gc0g 16816 Grpcgrp 18219 .gcmg 18342 odcod 18770 1rcur 19370 Ringcrg 19416 ℤRHomczrh 20320 chrcchr 20322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-pre-sup 10693 ax-addf 10694 ax-mulf 10695 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-er 8320 df-map 8439 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-sup 8979 df-inf 8980 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-2 11779 df-3 11780 df-4 11781 df-5 11782 df-6 11783 df-7 11784 df-8 11785 df-9 11786 df-n0 11977 df-z 12063 df-dec 12180 df-uz 12325 df-rp 12473 df-fz 12982 df-fl 13253 df-mod 13329 df-seq 13461 df-exp 13522 df-cj 14548 df-re 14549 df-im 14550 df-sqrt 14684 df-abs 14685 df-dvds 15700 df-struct 16588 df-ndx 16589 df-slot 16590 df-base 16592 df-sets 16593 df-ress 16594 df-plusg 16681 df-mulr 16682 df-starv 16683 df-tset 16687 df-ple 16688 df-ds 16690 df-unif 16691 df-0g 16818 df-mgm 17968 df-sgrp 18017 df-mnd 18028 df-mhm 18072 df-grp 18222 df-minusg 18223 df-sbg 18224 df-mulg 18343 df-subg 18394 df-ghm 18474 df-od 18774 df-cmn 19026 df-mgp 19359 df-ur 19371 df-ring 19418 df-cring 19419 df-rnghom 19589 df-subrg 19652 df-cnfld 20218 df-zring 20290 df-zrh 20324 df-chr 20326 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |