![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > chrid | Structured version Visualization version GIF version |
Description: The canonical ℤ ring homomorphism applied to a ring's characteristic is zero. (Contributed by Mario Carneiro, 23-Sep-2015.) |
Ref | Expression |
---|---|
chrcl.c | ⊢ 𝐶 = (chr‘𝑅) |
chrid.l | ⊢ 𝐿 = (ℤRHom‘𝑅) |
chrid.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
chrid | ⊢ (𝑅 ∈ Ring → (𝐿‘𝐶) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chrcl.c | . . . . 5 ⊢ 𝐶 = (chr‘𝑅) | |
2 | 1 | chrcl 21011 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝐶 ∈ ℕ0) |
3 | 2 | nn0zd 12566 | . . 3 ⊢ (𝑅 ∈ Ring → 𝐶 ∈ ℤ) |
4 | chrid.l | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
5 | eqid 2731 | . . . 4 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
6 | eqid 2731 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
7 | 4, 5, 6 | zrhmulg 20992 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ ℤ) → (𝐿‘𝐶) = (𝐶(.g‘𝑅)(1r‘𝑅))) |
8 | 3, 7 | mpdan 685 | . 2 ⊢ (𝑅 ∈ Ring → (𝐿‘𝐶) = (𝐶(.g‘𝑅)(1r‘𝑅))) |
9 | eqid 2731 | . . . . 5 ⊢ (od‘𝑅) = (od‘𝑅) | |
10 | 9, 6, 1 | chrval 21010 | . . . 4 ⊢ ((od‘𝑅)‘(1r‘𝑅)) = 𝐶 |
11 | 10 | oveq1i 7403 | . . 3 ⊢ (((od‘𝑅)‘(1r‘𝑅))(.g‘𝑅)(1r‘𝑅)) = (𝐶(.g‘𝑅)(1r‘𝑅)) |
12 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
13 | 12, 6 | ringidcl 20040 | . . . 4 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
14 | chrid.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
15 | 12, 9, 5, 14 | odid 19370 | . . . 4 ⊢ ((1r‘𝑅) ∈ (Base‘𝑅) → (((od‘𝑅)‘(1r‘𝑅))(.g‘𝑅)(1r‘𝑅)) = 0 ) |
16 | 13, 15 | syl 17 | . . 3 ⊢ (𝑅 ∈ Ring → (((od‘𝑅)‘(1r‘𝑅))(.g‘𝑅)(1r‘𝑅)) = 0 ) |
17 | 11, 16 | eqtr3id 2785 | . 2 ⊢ (𝑅 ∈ Ring → (𝐶(.g‘𝑅)(1r‘𝑅)) = 0 ) |
18 | 8, 17 | eqtrd 2771 | 1 ⊢ (𝑅 ∈ Ring → (𝐿‘𝐶) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ‘cfv 6532 (class class class)co 7393 ℤcz 12540 Basecbs 17126 0gc0g 17367 .gcmg 18922 odcod 19356 1rcur 19963 Ringcrg 20014 ℤRHomczrh 20982 chrcchr 20984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 ax-addf 11171 ax-mulf 11172 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-tp 4627 df-op 4629 df-uni 4902 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-1st 7957 df-2nd 7958 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-er 8686 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-sup 9419 df-inf 9420 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-nn 12195 df-2 12257 df-3 12258 df-4 12259 df-5 12260 df-6 12261 df-7 12262 df-8 12263 df-9 12264 df-n0 12455 df-z 12541 df-dec 12660 df-uz 12805 df-fz 13467 df-seq 13949 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17127 df-ress 17156 df-plusg 17192 df-mulr 17193 df-starv 17194 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-0g 17369 df-mgm 18543 df-sgrp 18592 df-mnd 18603 df-mhm 18647 df-grp 18797 df-minusg 18798 df-mulg 18923 df-subg 18975 df-ghm 19056 df-od 19360 df-cmn 19614 df-mgp 19947 df-ur 19964 df-ring 20016 df-cring 20017 df-rnghom 20201 df-subrg 20310 df-cnfld 20879 df-zring 20952 df-zrh 20986 df-chr 20988 |
This theorem is referenced by: chrrhm 21016 |
Copyright terms: Public domain | W3C validator |