Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > subrgchr | Structured version Visualization version GIF version |
Description: If 𝐴 is a subring of 𝑅, then they have the same characteristic. (Contributed by Thierry Arnoux, 24-Feb-2018.) |
Ref | Expression |
---|---|
subrgchr | ⊢ (𝐴 ∈ (SubRing‘𝑅) → (chr‘(𝑅 ↾s 𝐴)) = (chr‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgsubg 20030 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) | |
2 | eqid 2738 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
3 | 2 | subrg1cl 20032 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (1r‘𝑅) ∈ 𝐴) |
4 | eqid 2738 | . . . . 5 ⊢ (𝑅 ↾s 𝐴) = (𝑅 ↾s 𝐴) | |
5 | eqid 2738 | . . . . 5 ⊢ (od‘𝑅) = (od‘𝑅) | |
6 | eqid 2738 | . . . . 5 ⊢ (od‘(𝑅 ↾s 𝐴)) = (od‘(𝑅 ↾s 𝐴)) | |
7 | 4, 5, 6 | subgod 19175 | . . . 4 ⊢ ((𝐴 ∈ (SubGrp‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴) → ((od‘𝑅)‘(1r‘𝑅)) = ((od‘(𝑅 ↾s 𝐴))‘(1r‘𝑅))) |
8 | 1, 3, 7 | syl2anc 584 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ((od‘𝑅)‘(1r‘𝑅)) = ((od‘(𝑅 ↾s 𝐴))‘(1r‘𝑅))) |
9 | 4, 2 | subrg1 20034 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (1r‘𝑅) = (1r‘(𝑅 ↾s 𝐴))) |
10 | 9 | fveq2d 6778 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ((od‘(𝑅 ↾s 𝐴))‘(1r‘𝑅)) = ((od‘(𝑅 ↾s 𝐴))‘(1r‘(𝑅 ↾s 𝐴)))) |
11 | 8, 10 | eqtr2d 2779 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ((od‘(𝑅 ↾s 𝐴))‘(1r‘(𝑅 ↾s 𝐴))) = ((od‘𝑅)‘(1r‘𝑅))) |
12 | eqid 2738 | . . 3 ⊢ (1r‘(𝑅 ↾s 𝐴)) = (1r‘(𝑅 ↾s 𝐴)) | |
13 | eqid 2738 | . . 3 ⊢ (chr‘(𝑅 ↾s 𝐴)) = (chr‘(𝑅 ↾s 𝐴)) | |
14 | 6, 12, 13 | chrval 20729 | . 2 ⊢ ((od‘(𝑅 ↾s 𝐴))‘(1r‘(𝑅 ↾s 𝐴))) = (chr‘(𝑅 ↾s 𝐴)) |
15 | eqid 2738 | . . 3 ⊢ (chr‘𝑅) = (chr‘𝑅) | |
16 | 5, 2, 15 | chrval 20729 | . 2 ⊢ ((od‘𝑅)‘(1r‘𝑅)) = (chr‘𝑅) |
17 | 11, 14, 16 | 3eqtr3g 2801 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (chr‘(𝑅 ↾s 𝐴)) = (chr‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 ↾s cress 16941 SubGrpcsubg 18749 odcod 19132 1rcur 19737 SubRingcsubrg 20020 chrcchr 20703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-seq 13722 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-grp 18580 df-minusg 18581 df-mulg 18701 df-subg 18752 df-od 19136 df-mgp 19721 df-ur 19738 df-ring 19785 df-subrg 20022 df-chr 20707 |
This theorem is referenced by: primefldchr 31493 fldextchr 31740 cnrrext 31960 |
Copyright terms: Public domain | W3C validator |