Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clnbgrsym Structured version   Visualization version   GIF version

Theorem clnbgrsym 47824
Description: In a graph, the closed neighborhood relation is symmetric: a vertex 𝑁 in a graph 𝐺 is a neighbor of a second vertex 𝐾 iff the second vertex 𝐾 is a neighbor of the first vertex 𝑁. (Contributed by AV, 10-May-2025.)
Assertion
Ref Expression
clnbgrsym (𝑁 ∈ (𝐺 ClNeighbVtx 𝐾) ↔ 𝐾 ∈ (𝐺 ClNeighbVtx 𝑁))

Proof of Theorem clnbgrsym
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 ancom 460 . . 3 ((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐾 ∈ (Vtx‘𝐺)) ↔ (𝐾 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)))
2 eqcom 2744 . . . 4 (𝑁 = 𝐾𝐾 = 𝑁)
3 prcom 4732 . . . . . 6 {𝐾, 𝑁} = {𝑁, 𝐾}
43sseq1i 4012 . . . . 5 ({𝐾, 𝑁} ⊆ 𝑒 ↔ {𝑁, 𝐾} ⊆ 𝑒)
54rexbii 3094 . . . 4 (∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒 ↔ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝐾} ⊆ 𝑒)
62, 5orbi12i 915 . . 3 ((𝑁 = 𝐾 ∨ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒) ↔ (𝐾 = 𝑁 ∨ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝐾} ⊆ 𝑒))
71, 6anbi12i 628 . 2 (((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐾 ∈ (Vtx‘𝐺)) ∧ (𝑁 = 𝐾 ∨ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒)) ↔ ((𝐾 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)) ∧ (𝐾 = 𝑁 ∨ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝐾} ⊆ 𝑒)))
8 eqid 2737 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
9 eqid 2737 . . 3 (Edg‘𝐺) = (Edg‘𝐺)
108, 9clnbgrel 47815 . 2 (𝑁 ∈ (𝐺 ClNeighbVtx 𝐾) ↔ ((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐾 ∈ (Vtx‘𝐺)) ∧ (𝑁 = 𝐾 ∨ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒)))
118, 9clnbgrel 47815 . 2 (𝐾 ∈ (𝐺 ClNeighbVtx 𝑁) ↔ ((𝐾 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)) ∧ (𝐾 = 𝑁 ∨ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝐾} ⊆ 𝑒)))
127, 10, 113bitr4i 303 1 (𝑁 ∈ (𝐺 ClNeighbVtx 𝐾) ↔ 𝐾 ∈ (𝐺 ClNeighbVtx 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wrex 3070  wss 3951  {cpr 4628  cfv 6561  (class class class)co 7431  Vtxcvtx 29013  Edgcedg 29064   ClNeighbVtx cclnbgr 47805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-clnbgr 47806
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator