![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbgr0edg | Structured version Visualization version GIF version |
Description: In an empty graph (with no edges), every vertex has no neighbor. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 26-Oct-2020.) (Proof shortened by AV, 15-Nov-2020.) |
Ref | Expression |
---|---|
nbgr0edg | ⊢ ((Edg‘𝐺) = ∅ → (𝐺 NeighbVtx 𝐾) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rzal 4215 | . . . 4 ⊢ ((Edg‘𝐺) = ∅ → ∀𝑒 ∈ (Edg‘𝐺) ¬ {𝐾, 𝑛} ⊆ 𝑒) | |
2 | ralnex 3141 | . . . 4 ⊢ (∀𝑒 ∈ (Edg‘𝐺) ¬ {𝐾, 𝑛} ⊆ 𝑒 ↔ ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒) | |
3 | 1, 2 | sylib 208 | . . 3 ⊢ ((Edg‘𝐺) = ∅ → ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒) |
4 | 3 | ralrimivw 3116 | . 2 ⊢ ((Edg‘𝐺) = ∅ → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒) |
5 | 4 | nbgr0vtxlem 26474 | 1 ⊢ ((Edg‘𝐺) = ∅ → (𝐺 NeighbVtx 𝐾) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1631 ∀wral 3061 ∃wrex 3062 ∖ cdif 3720 ⊆ wss 3723 ∅c0 4063 {csn 4317 {cpr 4319 ‘cfv 6030 (class class class)co 6796 Vtxcvtx 26095 Edgcedg 26160 NeighbVtx cnbgr 26447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fv 6038 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-1st 7319 df-2nd 7320 df-nbgr 26448 |
This theorem is referenced by: uvtx01vtx 26525 uvtxa01vtx0OLD 26527 |
Copyright terms: Public domain | W3C validator |