| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nbgr0edg | Structured version Visualization version GIF version | ||
| Description: In an empty graph (with no edges), every vertex has no neighbor. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 26-Oct-2020.) (Proof shortened by AV, 15-Nov-2020.) |
| Ref | Expression |
|---|---|
| nbgr0edg | ⊢ ((Edg‘𝐺) = ∅ → (𝐺 NeighbVtx 𝐾) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rzal 4460 | . . . 4 ⊢ ((Edg‘𝐺) = ∅ → ∀𝑒 ∈ (Edg‘𝐺) ¬ {𝐾, 𝑛} ⊆ 𝑒) | |
| 2 | ralnex 3055 | . . . 4 ⊢ (∀𝑒 ∈ (Edg‘𝐺) ¬ {𝐾, 𝑛} ⊆ 𝑒 ↔ ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒) | |
| 3 | 1, 2 | sylib 218 | . . 3 ⊢ ((Edg‘𝐺) = ∅ → ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒) |
| 4 | 3 | ralrimivw 3125 | . 2 ⊢ ((Edg‘𝐺) = ∅ → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒) |
| 5 | 4 | nbgr0edglem 29301 | 1 ⊢ ((Edg‘𝐺) = ∅ → (𝐺 NeighbVtx 𝐾) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∀wral 3044 ∃wrex 3053 ∖ cdif 3900 ⊆ wss 3903 ∅c0 4284 {csn 4577 {cpr 4579 ‘cfv 6482 (class class class)co 7349 Vtxcvtx 28941 Edgcedg 28992 NeighbVtx cnbgr 29277 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-nbgr 29278 |
| This theorem is referenced by: uvtx01vtx 29342 clnbgr0edg 47821 |
| Copyright terms: Public domain | W3C validator |