MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgr0edg Structured version   Visualization version   GIF version

Theorem nbgr0edg 27627
Description: In an empty graph (with no edges), every vertex has no neighbor. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 26-Oct-2020.) (Proof shortened by AV, 15-Nov-2020.)
Assertion
Ref Expression
nbgr0edg ((Edg‘𝐺) = ∅ → (𝐺 NeighbVtx 𝐾) = ∅)

Proof of Theorem nbgr0edg
Dummy variables 𝑒 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rzal 4436 . . . 4 ((Edg‘𝐺) = ∅ → ∀𝑒 ∈ (Edg‘𝐺) ¬ {𝐾, 𝑛} ⊆ 𝑒)
2 ralnex 3163 . . . 4 (∀𝑒 ∈ (Edg‘𝐺) ¬ {𝐾, 𝑛} ⊆ 𝑒 ↔ ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒)
31, 2sylib 217 . . 3 ((Edg‘𝐺) = ∅ → ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒)
43ralrimivw 3108 . 2 ((Edg‘𝐺) = ∅ → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒)
54nbgr0vtxlem 27625 1 ((Edg‘𝐺) = ∅ → (𝐺 NeighbVtx 𝐾) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wral 3063  wrex 3064  cdif 3880  wss 3883  c0 4253  {csn 4558  {cpr 4560  cfv 6418  (class class class)co 7255  Vtxcvtx 27269  Edgcedg 27320   NeighbVtx cnbgr 27602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-nbgr 27603
This theorem is referenced by:  uvtx01vtx  27667
  Copyright terms: Public domain W3C validator