| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nbgr0edg | Structured version Visualization version GIF version | ||
| Description: In an empty graph (with no edges), every vertex has no neighbor. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 26-Oct-2020.) (Proof shortened by AV, 15-Nov-2020.) |
| Ref | Expression |
|---|---|
| nbgr0edg | ⊢ ((Edg‘𝐺) = ∅ → (𝐺 NeighbVtx 𝐾) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rzal 4484 | . . . 4 ⊢ ((Edg‘𝐺) = ∅ → ∀𝑒 ∈ (Edg‘𝐺) ¬ {𝐾, 𝑛} ⊆ 𝑒) | |
| 2 | ralnex 3062 | . . . 4 ⊢ (∀𝑒 ∈ (Edg‘𝐺) ¬ {𝐾, 𝑛} ⊆ 𝑒 ↔ ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒) | |
| 3 | 1, 2 | sylib 218 | . . 3 ⊢ ((Edg‘𝐺) = ∅ → ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒) |
| 4 | 3 | ralrimivw 3136 | . 2 ⊢ ((Edg‘𝐺) = ∅ → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒) |
| 5 | 4 | nbgr0edglem 29335 | 1 ⊢ ((Edg‘𝐺) = ∅ → (𝐺 NeighbVtx 𝐾) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∀wral 3051 ∃wrex 3060 ∖ cdif 3923 ⊆ wss 3926 ∅c0 4308 {csn 4601 {cpr 4603 ‘cfv 6531 (class class class)co 7405 Vtxcvtx 28975 Edgcedg 29026 NeighbVtx cnbgr 29311 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-nbgr 29312 |
| This theorem is referenced by: uvtx01vtx 29376 clnbgr0edg 47850 |
| Copyright terms: Public domain | W3C validator |