| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nbgr0edg | Structured version Visualization version GIF version | ||
| Description: In an empty graph (with no edges), every vertex has no neighbor. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 26-Oct-2020.) (Proof shortened by AV, 15-Nov-2020.) |
| Ref | Expression |
|---|---|
| nbgr0edg | ⊢ ((Edg‘𝐺) = ∅ → (𝐺 NeighbVtx 𝐾) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rzal 4468 | . . . 4 ⊢ ((Edg‘𝐺) = ∅ → ∀𝑒 ∈ (Edg‘𝐺) ¬ {𝐾, 𝑛} ⊆ 𝑒) | |
| 2 | ralnex 3055 | . . . 4 ⊢ (∀𝑒 ∈ (Edg‘𝐺) ¬ {𝐾, 𝑛} ⊆ 𝑒 ↔ ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒) | |
| 3 | 1, 2 | sylib 218 | . . 3 ⊢ ((Edg‘𝐺) = ∅ → ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒) |
| 4 | 3 | ralrimivw 3129 | . 2 ⊢ ((Edg‘𝐺) = ∅ → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒) |
| 5 | 4 | nbgr0edglem 29259 | 1 ⊢ ((Edg‘𝐺) = ∅ → (𝐺 NeighbVtx 𝐾) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∀wral 3044 ∃wrex 3053 ∖ cdif 3908 ⊆ wss 3911 ∅c0 4292 {csn 4585 {cpr 4587 ‘cfv 6499 (class class class)co 7369 Vtxcvtx 28899 Edgcedg 28950 NeighbVtx cnbgr 29235 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-nbgr 29236 |
| This theorem is referenced by: uvtx01vtx 29300 clnbgr0edg 47810 |
| Copyright terms: Public domain | W3C validator |