![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwlkl1loop | Structured version Visualization version GIF version |
Description: A closed walk of length 1 is a loop. (Contributed by AV, 22-Apr-2021.) |
Ref | Expression |
---|---|
clwlkl1loop | ⊢ ((Fun (iEdg‘𝐺) ∧ 𝐹(ClWalks‘𝐺)𝑃 ∧ (♯‘𝐹) = 1) → ((𝑃‘0) = (𝑃‘1) ∧ {(𝑃‘0)} ∈ (Edg‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isclwlk 29806 | . . 3 ⊢ (𝐹(ClWalks‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) | |
2 | fveq2 6907 | . . . . . . 7 ⊢ ((♯‘𝐹) = 1 → (𝑃‘(♯‘𝐹)) = (𝑃‘1)) | |
3 | 2 | eqeq2d 2746 | . . . . . 6 ⊢ ((♯‘𝐹) = 1 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ↔ (𝑃‘0) = (𝑃‘1))) |
4 | 3 | anbi2d 630 | . . . . 5 ⊢ ((♯‘𝐹) = 1 → ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘1)))) |
5 | simp2r 1199 | . . . . . . 7 ⊢ (((♯‘𝐹) = 1 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘1)) ∧ Fun (iEdg‘𝐺)) → (𝑃‘0) = (𝑃‘1)) | |
6 | simp3 1137 | . . . . . . . 8 ⊢ (((♯‘𝐹) = 1 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘1)) ∧ Fun (iEdg‘𝐺)) → Fun (iEdg‘𝐺)) | |
7 | simp2l 1198 | . . . . . . . 8 ⊢ (((♯‘𝐹) = 1 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘1)) ∧ Fun (iEdg‘𝐺)) → 𝐹(Walks‘𝐺)𝑃) | |
8 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘1)) → (𝑃‘0) = (𝑃‘1)) | |
9 | 8 | anim2i 617 | . . . . . . . . 9 ⊢ (((♯‘𝐹) = 1 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘1))) → ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) |
10 | 9 | 3adant3 1131 | . . . . . . . 8 ⊢ (((♯‘𝐹) = 1 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘1)) ∧ Fun (iEdg‘𝐺)) → ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) |
11 | wlkl1loop 29671 | . . . . . . . 8 ⊢ (((Fun (iEdg‘𝐺) ∧ 𝐹(Walks‘𝐺)𝑃) ∧ ((♯‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} ∈ (Edg‘𝐺)) | |
12 | 6, 7, 10, 11 | syl21anc 838 | . . . . . . 7 ⊢ (((♯‘𝐹) = 1 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘1)) ∧ Fun (iEdg‘𝐺)) → {(𝑃‘0)} ∈ (Edg‘𝐺)) |
13 | 5, 12 | jca 511 | . . . . . 6 ⊢ (((♯‘𝐹) = 1 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘1)) ∧ Fun (iEdg‘𝐺)) → ((𝑃‘0) = (𝑃‘1) ∧ {(𝑃‘0)} ∈ (Edg‘𝐺))) |
14 | 13 | 3exp 1118 | . . . . 5 ⊢ ((♯‘𝐹) = 1 → ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘1)) → (Fun (iEdg‘𝐺) → ((𝑃‘0) = (𝑃‘1) ∧ {(𝑃‘0)} ∈ (Edg‘𝐺))))) |
15 | 4, 14 | sylbid 240 | . . . 4 ⊢ ((♯‘𝐹) = 1 → ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (Fun (iEdg‘𝐺) → ((𝑃‘0) = (𝑃‘1) ∧ {(𝑃‘0)} ∈ (Edg‘𝐺))))) |
16 | 15 | com13 88 | . . 3 ⊢ (Fun (iEdg‘𝐺) → ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((♯‘𝐹) = 1 → ((𝑃‘0) = (𝑃‘1) ∧ {(𝑃‘0)} ∈ (Edg‘𝐺))))) |
17 | 1, 16 | biimtrid 242 | . 2 ⊢ (Fun (iEdg‘𝐺) → (𝐹(ClWalks‘𝐺)𝑃 → ((♯‘𝐹) = 1 → ((𝑃‘0) = (𝑃‘1) ∧ {(𝑃‘0)} ∈ (Edg‘𝐺))))) |
18 | 17 | 3imp 1110 | 1 ⊢ ((Fun (iEdg‘𝐺) ∧ 𝐹(ClWalks‘𝐺)𝑃 ∧ (♯‘𝐹) = 1) → ((𝑃‘0) = (𝑃‘1) ∧ {(𝑃‘0)} ∈ (Edg‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 {csn 4631 class class class wbr 5148 Fun wfun 6557 ‘cfv 6563 0cc0 11153 1c1 11154 ♯chash 14366 iEdgciedg 29029 Edgcedg 29079 Walkscwlks 29629 ClWalkscclwlks 29803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-fzo 13692 df-hash 14367 df-word 14550 df-edg 29080 df-wlks 29632 df-clwlks 29804 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |