Step | Hyp | Ref
| Expression |
1 | | isclwlk 29294 |
. . 3
β’ (πΉ(ClWalksβπΊ)π β (πΉ(WalksβπΊ)π β§ (πβ0) = (πβ(β―βπΉ)))) |
2 | | fveq2 6892 |
. . . . . . 7
β’
((β―βπΉ) =
1 β (πβ(β―βπΉ)) = (πβ1)) |
3 | 2 | eqeq2d 2742 |
. . . . . 6
β’
((β―βπΉ) =
1 β ((πβ0) =
(πβ(β―βπΉ)) β (πβ0) = (πβ1))) |
4 | 3 | anbi2d 628 |
. . . . 5
β’
((β―βπΉ) =
1 β ((πΉ(WalksβπΊ)π β§ (πβ0) = (πβ(β―βπΉ))) β (πΉ(WalksβπΊ)π β§ (πβ0) = (πβ1)))) |
5 | | simp2r 1199 |
. . . . . . 7
β’
(((β―βπΉ)
= 1 β§ (πΉ(WalksβπΊ)π β§ (πβ0) = (πβ1)) β§ Fun (iEdgβπΊ)) β (πβ0) = (πβ1)) |
6 | | simp3 1137 |
. . . . . . . 8
β’
(((β―βπΉ)
= 1 β§ (πΉ(WalksβπΊ)π β§ (πβ0) = (πβ1)) β§ Fun (iEdgβπΊ)) β Fun (iEdgβπΊ)) |
7 | | simp2l 1198 |
. . . . . . . 8
β’
(((β―βπΉ)
= 1 β§ (πΉ(WalksβπΊ)π β§ (πβ0) = (πβ1)) β§ Fun (iEdgβπΊ)) β πΉ(WalksβπΊ)π) |
8 | | simpr 484 |
. . . . . . . . . 10
β’ ((πΉ(WalksβπΊ)π β§ (πβ0) = (πβ1)) β (πβ0) = (πβ1)) |
9 | 8 | anim2i 616 |
. . . . . . . . 9
β’
(((β―βπΉ)
= 1 β§ (πΉ(WalksβπΊ)π β§ (πβ0) = (πβ1))) β ((β―βπΉ) = 1 β§ (πβ0) = (πβ1))) |
10 | 9 | 3adant3 1131 |
. . . . . . . 8
β’
(((β―βπΉ)
= 1 β§ (πΉ(WalksβπΊ)π β§ (πβ0) = (πβ1)) β§ Fun (iEdgβπΊ)) β ((β―βπΉ) = 1 β§ (πβ0) = (πβ1))) |
11 | | wlkl1loop 29159 |
. . . . . . . 8
β’ (((Fun
(iEdgβπΊ) β§ πΉ(WalksβπΊ)π) β§ ((β―βπΉ) = 1 β§ (πβ0) = (πβ1))) β {(πβ0)} β (EdgβπΊ)) |
12 | 6, 7, 10, 11 | syl21anc 835 |
. . . . . . 7
β’
(((β―βπΉ)
= 1 β§ (πΉ(WalksβπΊ)π β§ (πβ0) = (πβ1)) β§ Fun (iEdgβπΊ)) β {(πβ0)} β (EdgβπΊ)) |
13 | 5, 12 | jca 511 |
. . . . . 6
β’
(((β―βπΉ)
= 1 β§ (πΉ(WalksβπΊ)π β§ (πβ0) = (πβ1)) β§ Fun (iEdgβπΊ)) β ((πβ0) = (πβ1) β§ {(πβ0)} β (EdgβπΊ))) |
14 | 13 | 3exp 1118 |
. . . . 5
β’
((β―βπΉ) =
1 β ((πΉ(WalksβπΊ)π β§ (πβ0) = (πβ1)) β (Fun (iEdgβπΊ) β ((πβ0) = (πβ1) β§ {(πβ0)} β (EdgβπΊ))))) |
15 | 4, 14 | sylbid 239 |
. . . 4
β’
((β―βπΉ) =
1 β ((πΉ(WalksβπΊ)π β§ (πβ0) = (πβ(β―βπΉ))) β (Fun (iEdgβπΊ) β ((πβ0) = (πβ1) β§ {(πβ0)} β (EdgβπΊ))))) |
16 | 15 | com13 88 |
. . 3
β’ (Fun
(iEdgβπΊ) β
((πΉ(WalksβπΊ)π β§ (πβ0) = (πβ(β―βπΉ))) β ((β―βπΉ) = 1 β ((πβ0) = (πβ1) β§ {(πβ0)} β (EdgβπΊ))))) |
17 | 1, 16 | biimtrid 241 |
. 2
β’ (Fun
(iEdgβπΊ) β
(πΉ(ClWalksβπΊ)π β ((β―βπΉ) = 1 β ((πβ0) = (πβ1) β§ {(πβ0)} β (EdgβπΊ))))) |
18 | 17 | 3imp 1110 |
1
β’ ((Fun
(iEdgβπΊ) β§ πΉ(ClWalksβπΊ)π β§ (β―βπΉ) = 1) β ((πβ0) = (πβ1) β§ {(πβ0)} β (EdgβπΊ))) |