MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnsscnp Structured version   Visualization version   GIF version

Theorem cnsscnp 23187
Description: The set of continuous functions is a subset of the set of continuous functions at a point. (Contributed by Raph Levien, 21-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnsscnp.1 𝑋 = 𝐽
Assertion
Ref Expression
cnsscnp (𝑃𝑋 → (𝐽 Cn 𝐾) ⊆ ((𝐽 CnP 𝐾)‘𝑃))

Proof of Theorem cnsscnp
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cnsscnp.1 . . . 4 𝑋 = 𝐽
21cncnpi 23186 . . 3 ((𝑓 ∈ (𝐽 Cn 𝐾) ∧ 𝑃𝑋) → 𝑓 ∈ ((𝐽 CnP 𝐾)‘𝑃))
32expcom 413 . 2 (𝑃𝑋 → (𝑓 ∈ (𝐽 Cn 𝐾) → 𝑓 ∈ ((𝐽 CnP 𝐾)‘𝑃)))
43ssrdv 3938 1 (𝑃𝑋 → (𝐽 Cn 𝐾) ⊆ ((𝐽 CnP 𝐾)‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2110  wss 3900   cuni 4857  cfv 6477  (class class class)co 7341   Cn ccn 23132   CnP ccnp 23133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-map 8747  df-top 22802  df-topon 22819  df-cn 23135  df-cnp 23136
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator