Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnsscnp | Structured version Visualization version GIF version |
Description: The set of continuous functions is a subset of the set of continuous functions at a point. (Contributed by Raph Levien, 21-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
cnsscnp.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
cnsscnp | ⊢ (𝑃 ∈ 𝑋 → (𝐽 Cn 𝐾) ⊆ ((𝐽 CnP 𝐾)‘𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnsscnp.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | cncnpi 22410 | . . 3 ⊢ ((𝑓 ∈ (𝐽 Cn 𝐾) ∧ 𝑃 ∈ 𝑋) → 𝑓 ∈ ((𝐽 CnP 𝐾)‘𝑃)) |
3 | 2 | expcom 413 | . 2 ⊢ (𝑃 ∈ 𝑋 → (𝑓 ∈ (𝐽 Cn 𝐾) → 𝑓 ∈ ((𝐽 CnP 𝐾)‘𝑃))) |
4 | 3 | ssrdv 3931 | 1 ⊢ (𝑃 ∈ 𝑋 → (𝐽 Cn 𝐾) ⊆ ((𝐽 CnP 𝐾)‘𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ⊆ wss 3891 ∪ cuni 4844 ‘cfv 6430 (class class class)co 7268 Cn ccn 22356 CnP ccnp 22357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-map 8591 df-top 22024 df-topon 22041 df-cn 22359 df-cnp 22360 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |