MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnsscnp Structured version   Visualization version   GIF version

Theorem cnsscnp 23312
Description: The set of continuous functions is a subset of the set of continuous functions at a point. (Contributed by Raph Levien, 21-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnsscnp.1 𝑋 = 𝐽
Assertion
Ref Expression
cnsscnp (𝑃𝑋 → (𝐽 Cn 𝐾) ⊆ ((𝐽 CnP 𝐾)‘𝑃))

Proof of Theorem cnsscnp
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cnsscnp.1 . . . 4 𝑋 = 𝐽
21cncnpi 23311 . . 3 ((𝑓 ∈ (𝐽 Cn 𝐾) ∧ 𝑃𝑋) → 𝑓 ∈ ((𝐽 CnP 𝐾)‘𝑃))
32expcom 413 . 2 (𝑃𝑋 → (𝑓 ∈ (𝐽 Cn 𝐾) → 𝑓 ∈ ((𝐽 CnP 𝐾)‘𝑃)))
43ssrdv 4004 1 (𝑃𝑋 → (𝐽 Cn 𝐾) ⊆ ((𝐽 CnP 𝐾)‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wss 3966   cuni 4915  cfv 6569  (class class class)co 7438   Cn ccn 23257   CnP ccnp 23258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-map 8876  df-top 22925  df-topon 22942  df-cn 23260  df-cnp 23261
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator