MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncnpi Structured version   Visualization version   GIF version

Theorem cncnpi 22337
Description: A continuous function is continuous at all points. One direction of Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Raph Levien, 20-Nov-2006.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnsscnp.1 𝑋 = 𝐽
Assertion
Ref Expression
cncnpi ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))

Proof of Theorem cncnpi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnsscnp.1 . . . 4 𝑋 = 𝐽
2 eqid 2738 . . . 4 𝐾 = 𝐾
31, 2cnf 22305 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋 𝐾)
43adantr 480 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐹:𝑋 𝐾)
5 cnima 22324 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑦𝐾) → (𝐹𝑦) ∈ 𝐽)
65ad2ant2r 743 . . . . 5 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ (𝑦𝐾 ∧ (𝐹𝐴) ∈ 𝑦)) → (𝐹𝑦) ∈ 𝐽)
7 simpr 484 . . . . . . 7 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐴𝑋)
87adantr 480 . . . . . 6 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ (𝑦𝐾 ∧ (𝐹𝐴) ∈ 𝑦)) → 𝐴𝑋)
9 simprr 769 . . . . . 6 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ (𝑦𝐾 ∧ (𝐹𝐴) ∈ 𝑦)) → (𝐹𝐴) ∈ 𝑦)
103ad2antrr 722 . . . . . . 7 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ (𝑦𝐾 ∧ (𝐹𝐴) ∈ 𝑦)) → 𝐹:𝑋 𝐾)
11 ffn 6584 . . . . . . 7 (𝐹:𝑋 𝐾𝐹 Fn 𝑋)
12 elpreima 6917 . . . . . . 7 (𝐹 Fn 𝑋 → (𝐴 ∈ (𝐹𝑦) ↔ (𝐴𝑋 ∧ (𝐹𝐴) ∈ 𝑦)))
1310, 11, 123syl 18 . . . . . 6 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ (𝑦𝐾 ∧ (𝐹𝐴) ∈ 𝑦)) → (𝐴 ∈ (𝐹𝑦) ↔ (𝐴𝑋 ∧ (𝐹𝐴) ∈ 𝑦)))
148, 9, 13mpbir2and 709 . . . . 5 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ (𝑦𝐾 ∧ (𝐹𝐴) ∈ 𝑦)) → 𝐴 ∈ (𝐹𝑦))
15 eqimss 3973 . . . . . . . 8 (𝑥 = (𝐹𝑦) → 𝑥 ⊆ (𝐹𝑦))
1615biantrud 531 . . . . . . 7 (𝑥 = (𝐹𝑦) → (𝐴𝑥 ↔ (𝐴𝑥𝑥 ⊆ (𝐹𝑦))))
17 eleq2 2827 . . . . . . 7 (𝑥 = (𝐹𝑦) → (𝐴𝑥𝐴 ∈ (𝐹𝑦)))
1816, 17bitr3d 280 . . . . . 6 (𝑥 = (𝐹𝑦) → ((𝐴𝑥𝑥 ⊆ (𝐹𝑦)) ↔ 𝐴 ∈ (𝐹𝑦)))
1918rspcev 3552 . . . . 5 (((𝐹𝑦) ∈ 𝐽𝐴 ∈ (𝐹𝑦)) → ∃𝑥𝐽 (𝐴𝑥𝑥 ⊆ (𝐹𝑦)))
206, 14, 19syl2anc 583 . . . 4 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ (𝑦𝐾 ∧ (𝐹𝐴) ∈ 𝑦)) → ∃𝑥𝐽 (𝐴𝑥𝑥 ⊆ (𝐹𝑦)))
2120expr 456 . . 3 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ 𝑦𝐾) → ((𝐹𝐴) ∈ 𝑦 → ∃𝑥𝐽 (𝐴𝑥𝑥 ⊆ (𝐹𝑦))))
2221ralrimiva 3107 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → ∀𝑦𝐾 ((𝐹𝐴) ∈ 𝑦 → ∃𝑥𝐽 (𝐴𝑥𝑥 ⊆ (𝐹𝑦))))
23 cntop1 22299 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
2423adantr 480 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐽 ∈ Top)
251toptopon 21974 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
2624, 25sylib 217 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
27 cntop2 22300 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
2827adantr 480 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐾 ∈ Top)
292toptopon 21974 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
3028, 29sylib 217 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐾 ∈ (TopOn‘ 𝐾))
31 iscnp3 22303 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋 𝐾 ∧ ∀𝑦𝐾 ((𝐹𝐴) ∈ 𝑦 → ∃𝑥𝐽 (𝐴𝑥𝑥 ⊆ (𝐹𝑦))))))
3226, 30, 7, 31syl3anc 1369 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋 𝐾 ∧ ∀𝑦𝐾 ((𝐹𝐴) ∈ 𝑦 → ∃𝑥𝐽 (𝐴𝑥𝑥 ⊆ (𝐹𝑦))))))
334, 22, 32mpbir2and 709 1 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  wss 3883   cuni 4836  ccnv 5579  cima 5583   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  Topctop 21950  TopOnctopon 21967   Cn ccn 22283   CnP ccnp 22284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-top 21951  df-topon 21968  df-cn 22286  df-cnp 22287
This theorem is referenced by:  cnsscnp  22338  cncnp  22339  lmcn  22364  ptcn  22686  tmdcn2  23148  ghmcnp  23174  tsmsmhm  23205  tsmsadd  23206  dvcnp2  24989  dvaddbr  25007  dvmulbr  25008  dvcobr  25015  dvcjbr  25018  dvcnvlem  25045  lhop1lem  25082  dvcnvrelem2  25087  ftc1cn  25112  taylthlem2  25438  psercn  25490  abelth  25505  cxpcn3  25806  efrlim  26024  blocni  29068  cvmlift2lem11  33175  cvmlift2lem12  33176  cvmlift3lem7  33187  poimir  35737  ftc1cnnc  35776  cncfiooicclem1  43324  fouriercn  43663
  Copyright terms: Public domain W3C validator