Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncnpi Structured version   Visualization version   GIF version

Theorem cncnpi 21887
 Description: A continuous function is continuous at all points. One direction of Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Raph Levien, 20-Nov-2006.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnsscnp.1 𝑋 = 𝐽
Assertion
Ref Expression
cncnpi ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))

Proof of Theorem cncnpi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnsscnp.1 . . . 4 𝑋 = 𝐽
2 eqid 2801 . . . 4 𝐾 = 𝐾
31, 2cnf 21855 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋 𝐾)
43adantr 484 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐹:𝑋 𝐾)
5 cnima 21874 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑦𝐾) → (𝐹𝑦) ∈ 𝐽)
65ad2ant2r 746 . . . . 5 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ (𝑦𝐾 ∧ (𝐹𝐴) ∈ 𝑦)) → (𝐹𝑦) ∈ 𝐽)
7 simpr 488 . . . . . . 7 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐴𝑋)
87adantr 484 . . . . . 6 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ (𝑦𝐾 ∧ (𝐹𝐴) ∈ 𝑦)) → 𝐴𝑋)
9 simprr 772 . . . . . 6 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ (𝑦𝐾 ∧ (𝐹𝐴) ∈ 𝑦)) → (𝐹𝐴) ∈ 𝑦)
103ad2antrr 725 . . . . . . 7 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ (𝑦𝐾 ∧ (𝐹𝐴) ∈ 𝑦)) → 𝐹:𝑋 𝐾)
11 ffn 6491 . . . . . . 7 (𝐹:𝑋 𝐾𝐹 Fn 𝑋)
12 elpreima 6809 . . . . . . 7 (𝐹 Fn 𝑋 → (𝐴 ∈ (𝐹𝑦) ↔ (𝐴𝑋 ∧ (𝐹𝐴) ∈ 𝑦)))
1310, 11, 123syl 18 . . . . . 6 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ (𝑦𝐾 ∧ (𝐹𝐴) ∈ 𝑦)) → (𝐴 ∈ (𝐹𝑦) ↔ (𝐴𝑋 ∧ (𝐹𝐴) ∈ 𝑦)))
148, 9, 13mpbir2and 712 . . . . 5 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ (𝑦𝐾 ∧ (𝐹𝐴) ∈ 𝑦)) → 𝐴 ∈ (𝐹𝑦))
15 eqimss 3974 . . . . . . . 8 (𝑥 = (𝐹𝑦) → 𝑥 ⊆ (𝐹𝑦))
1615biantrud 535 . . . . . . 7 (𝑥 = (𝐹𝑦) → (𝐴𝑥 ↔ (𝐴𝑥𝑥 ⊆ (𝐹𝑦))))
17 eleq2 2881 . . . . . . 7 (𝑥 = (𝐹𝑦) → (𝐴𝑥𝐴 ∈ (𝐹𝑦)))
1816, 17bitr3d 284 . . . . . 6 (𝑥 = (𝐹𝑦) → ((𝐴𝑥𝑥 ⊆ (𝐹𝑦)) ↔ 𝐴 ∈ (𝐹𝑦)))
1918rspcev 3574 . . . . 5 (((𝐹𝑦) ∈ 𝐽𝐴 ∈ (𝐹𝑦)) → ∃𝑥𝐽 (𝐴𝑥𝑥 ⊆ (𝐹𝑦)))
206, 14, 19syl2anc 587 . . . 4 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ (𝑦𝐾 ∧ (𝐹𝐴) ∈ 𝑦)) → ∃𝑥𝐽 (𝐴𝑥𝑥 ⊆ (𝐹𝑦)))
2120expr 460 . . 3 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) ∧ 𝑦𝐾) → ((𝐹𝐴) ∈ 𝑦 → ∃𝑥𝐽 (𝐴𝑥𝑥 ⊆ (𝐹𝑦))))
2221ralrimiva 3152 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → ∀𝑦𝐾 ((𝐹𝐴) ∈ 𝑦 → ∃𝑥𝐽 (𝐴𝑥𝑥 ⊆ (𝐹𝑦))))
23 cntop1 21849 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
2423adantr 484 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐽 ∈ Top)
251toptopon 21526 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
2624, 25sylib 221 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
27 cntop2 21850 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
2827adantr 484 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐾 ∈ Top)
292toptopon 21526 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
3028, 29sylib 221 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐾 ∈ (TopOn‘ 𝐾))
31 iscnp3 21853 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋 𝐾 ∧ ∀𝑦𝐾 ((𝐹𝐴) ∈ 𝑦 → ∃𝑥𝐽 (𝐴𝑥𝑥 ⊆ (𝐹𝑦))))))
3226, 30, 7, 31syl3anc 1368 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋 𝐾 ∧ ∀𝑦𝐾 ((𝐹𝐴) ∈ 𝑦 → ∃𝑥𝐽 (𝐴𝑥𝑥 ⊆ (𝐹𝑦))))))
334, 22, 32mpbir2and 712 1 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2112  ∀wral 3109  ∃wrex 3110   ⊆ wss 3884  ∪ cuni 4803  ◡ccnv 5522   “ cima 5526   Fn wfn 6323  ⟶wf 6324  ‘cfv 6328  (class class class)co 7139  Topctop 21502  TopOnctopon 21519   Cn ccn 21833   CnP ccnp 21834 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-map 8395  df-top 21503  df-topon 21520  df-cn 21836  df-cnp 21837 This theorem is referenced by:  cnsscnp  21888  cncnp  21889  lmcn  21914  ptcn  22236  tmdcn2  22698  ghmcnp  22724  tsmsmhm  22755  tsmsadd  22756  dvcnp2  24527  dvaddbr  24545  dvmulbr  24546  dvcobr  24553  dvcjbr  24556  dvcnvlem  24583  lhop1lem  24620  dvcnvrelem2  24625  ftc1cn  24650  taylthlem2  24973  psercn  25025  abelth  25040  cxpcn3  25341  efrlim  25559  blocni  28592  cvmlift2lem11  32674  cvmlift2lem12  32675  cvmlift3lem7  32686  poimir  35089  ftc1cnnc  35128  cncfiooicclem1  42528  fouriercn  42867
 Copyright terms: Public domain W3C validator