MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphpyth Structured version   Visualization version   GIF version

Theorem cphpyth 25262
Description: The pythagorean theorem for a subcomplex pre-Hilbert space. The square of the norm of the sum of two orthogonal vectors (i.e., whose inner product is 0) is the sum of the squares of their norms. Problem 2 in [Kreyszig] p. 135. This is Metamath 100 proof #4. (Contributed by NM, 17-Apr-2008.) (Revised by SN, 22-Sep-2024.)
Hypotheses
Ref Expression
cphpyth.v 𝑉 = (Base‘𝑊)
cphpyth.h , = (·𝑖𝑊)
cphpyth.p + = (+g𝑊)
cphpyth.n 𝑁 = (norm‘𝑊)
cphpyth.w (𝜑𝑊 ∈ ℂPreHil)
cphpyth.a (𝜑𝐴𝑉)
cphpyth.b (𝜑𝐵𝑉)
Assertion
Ref Expression
cphpyth ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝑁‘(𝐴 + 𝐵))↑2) = (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)))

Proof of Theorem cphpyth
StepHypRef Expression
1 cphpyth.h . . . . 5 , = (·𝑖𝑊)
2 cphpyth.v . . . . 5 𝑉 = (Base‘𝑊)
3 cphpyth.p . . . . 5 + = (+g𝑊)
4 cphpyth.w . . . . 5 (𝜑𝑊 ∈ ℂPreHil)
5 cphpyth.a . . . . 5 (𝜑𝐴𝑉)
6 cphpyth.b . . . . 5 (𝜑𝐵𝑉)
71, 2, 3, 4, 5, 6, 5, 6cph2di 25253 . . . 4 (𝜑 → ((𝐴 + 𝐵) , (𝐴 + 𝐵)) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))))
87adantr 480 . . 3 ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝐴 + 𝐵) , (𝐴 + 𝐵)) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))))
9 simpr 484 . . . . . 6 ((𝜑 ∧ (𝐴 , 𝐵) = 0) → (𝐴 , 𝐵) = 0)
101, 2cphorthcom 25247 . . . . . . . 8 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉) → ((𝐴 , 𝐵) = 0 ↔ (𝐵 , 𝐴) = 0))
114, 5, 6, 10syl3anc 1371 . . . . . . 7 (𝜑 → ((𝐴 , 𝐵) = 0 ↔ (𝐵 , 𝐴) = 0))
1211biimpa 476 . . . . . 6 ((𝜑 ∧ (𝐴 , 𝐵) = 0) → (𝐵 , 𝐴) = 0)
139, 12oveq12d 7463 . . . . 5 ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝐴 , 𝐵) + (𝐵 , 𝐴)) = (0 + 0))
14 00id 11461 . . . . 5 (0 + 0) = 0
1513, 14eqtrdi 2790 . . . 4 ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝐴 , 𝐵) + (𝐵 , 𝐴)) = 0)
1615oveq2d 7461 . . 3 ((𝜑 ∧ (𝐴 , 𝐵) = 0) → (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + 0))
172, 1cphipcl 25237 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐴𝑉) → (𝐴 , 𝐴) ∈ ℂ)
184, 5, 5, 17syl3anc 1371 . . . . . 6 (𝜑 → (𝐴 , 𝐴) ∈ ℂ)
192, 1cphipcl 25237 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ 𝐵𝑉𝐵𝑉) → (𝐵 , 𝐵) ∈ ℂ)
204, 6, 6, 19syl3anc 1371 . . . . . 6 (𝜑 → (𝐵 , 𝐵) ∈ ℂ)
2118, 20addcld 11305 . . . . 5 (𝜑 → ((𝐴 , 𝐴) + (𝐵 , 𝐵)) ∈ ℂ)
2221addridd 11486 . . . 4 (𝜑 → (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + 0) = ((𝐴 , 𝐴) + (𝐵 , 𝐵)))
2322adantr 480 . . 3 ((𝜑 ∧ (𝐴 , 𝐵) = 0) → (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + 0) = ((𝐴 , 𝐴) + (𝐵 , 𝐵)))
248, 16, 233eqtrd 2778 . 2 ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝐴 + 𝐵) , (𝐴 + 𝐵)) = ((𝐴 , 𝐴) + (𝐵 , 𝐵)))
25 cphngp 25219 . . . . . 6 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)
26 ngpgrp 24626 . . . . . 6 (𝑊 ∈ NrmGrp → 𝑊 ∈ Grp)
274, 25, 263syl 18 . . . . 5 (𝜑𝑊 ∈ Grp)
282, 3, 27, 5, 6grpcld 18982 . . . 4 (𝜑 → (𝐴 + 𝐵) ∈ 𝑉)
29 cphpyth.n . . . . 5 𝑁 = (norm‘𝑊)
302, 1, 29nmsq 25240 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + 𝐵) ∈ 𝑉) → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵)))
314, 28, 30syl2anc 583 . . 3 (𝜑 → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵)))
3231adantr 480 . 2 ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵)))
332, 1, 29nmsq 25240 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉) → ((𝑁𝐴)↑2) = (𝐴 , 𝐴))
344, 5, 33syl2anc 583 . . . 4 (𝜑 → ((𝑁𝐴)↑2) = (𝐴 , 𝐴))
352, 1, 29nmsq 25240 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝐵𝑉) → ((𝑁𝐵)↑2) = (𝐵 , 𝐵))
364, 6, 35syl2anc 583 . . . 4 (𝜑 → ((𝑁𝐵)↑2) = (𝐵 , 𝐵))
3734, 36oveq12d 7463 . . 3 (𝜑 → (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)) = ((𝐴 , 𝐴) + (𝐵 , 𝐵)))
3837adantr 480 . 2 ((𝜑 ∧ (𝐴 , 𝐵) = 0) → (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)) = ((𝐴 , 𝐴) + (𝐵 , 𝐵)))
3924, 32, 383eqtr4d 2784 1 ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝑁‘(𝐴 + 𝐵))↑2) = (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2103  cfv 6572  (class class class)co 7445  cc 11178  0cc0 11180   + caddc 11183  2c2 12344  cexp 14108  Basecbs 17253  +gcplusg 17306  ·𝑖cip 17311  Grpcgrp 18968  normcnm 24603  NrmGrpcngp 24604  ℂPreHilccph 25212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257  ax-pre-sup 11258  ax-addf 11259  ax-mulf 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3383  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-om 7900  df-1st 8026  df-2nd 8027  df-tpos 8263  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-1o 8518  df-er 8759  df-map 8882  df-en 9000  df-dom 9001  df-sdom 9002  df-fin 9003  df-sup 9507  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-div 11944  df-nn 12290  df-2 12352  df-3 12353  df-4 12354  df-5 12355  df-6 12356  df-7 12357  df-8 12358  df-9 12359  df-n0 12550  df-z 12636  df-dec 12755  df-uz 12900  df-rp 13054  df-fz 13564  df-seq 14049  df-exp 14109  df-cj 15144  df-re 15145  df-im 15146  df-sqrt 15280  df-abs 15281  df-struct 17189  df-sets 17206  df-slot 17224  df-ndx 17236  df-base 17254  df-ress 17283  df-plusg 17319  df-mulr 17320  df-starv 17321  df-sca 17322  df-vsca 17323  df-ip 17324  df-tset 17325  df-ple 17326  df-ds 17328  df-unif 17329  df-0g 17496  df-mgm 18673  df-sgrp 18752  df-mnd 18768  df-mhm 18813  df-grp 18971  df-minusg 18972  df-subg 19158  df-ghm 19248  df-cmn 19819  df-abl 19820  df-mgp 20157  df-rng 20175  df-ur 20204  df-ring 20257  df-cring 20258  df-oppr 20355  df-dvdsr 20378  df-unit 20379  df-rhm 20493  df-subrg 20592  df-drng 20748  df-staf 20857  df-srng 20858  df-lmod 20877  df-lmhm 21039  df-lvec 21120  df-sra 21190  df-rgmod 21191  df-cnfld 21383  df-phl 21662  df-ngp 24610  df-nlm 24613  df-clm 25108  df-cph 25214
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator