| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cphpyth | Structured version Visualization version GIF version | ||
| Description: The pythagorean theorem for a subcomplex pre-Hilbert space. The square of the norm of the sum of two orthogonal vectors (i.e., whose inner product is 0) is the sum of the squares of their norms. Problem 2 in [Kreyszig] p. 135. This is Metamath 100 proof #4. (Contributed by NM, 17-Apr-2008.) (Revised by SN, 22-Sep-2024.) |
| Ref | Expression |
|---|---|
| cphpyth.v | ⊢ 𝑉 = (Base‘𝑊) |
| cphpyth.h | ⊢ , = (·𝑖‘𝑊) |
| cphpyth.p | ⊢ + = (+g‘𝑊) |
| cphpyth.n | ⊢ 𝑁 = (norm‘𝑊) |
| cphpyth.w | ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) |
| cphpyth.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| cphpyth.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| cphpyth | ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝑁‘(𝐴 + 𝐵))↑2) = (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphpyth.h | . . . . 5 ⊢ , = (·𝑖‘𝑊) | |
| 2 | cphpyth.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | cphpyth.p | . . . . 5 ⊢ + = (+g‘𝑊) | |
| 4 | cphpyth.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) | |
| 5 | cphpyth.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 6 | cphpyth.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 7 | 1, 2, 3, 4, 5, 6, 5, 6 | cph2di 25113 | . . . 4 ⊢ (𝜑 → ((𝐴 + 𝐵) , (𝐴 + 𝐵)) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴)))) |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝐴 + 𝐵) , (𝐴 + 𝐵)) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴)))) |
| 9 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → (𝐴 , 𝐵) = 0) | |
| 10 | 1, 2 | cphorthcom 25107 | . . . . . . . 8 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 , 𝐵) = 0 ↔ (𝐵 , 𝐴) = 0)) |
| 11 | 4, 5, 6, 10 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 , 𝐵) = 0 ↔ (𝐵 , 𝐴) = 0)) |
| 12 | 11 | biimpa 476 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → (𝐵 , 𝐴) = 0) |
| 13 | 9, 12 | oveq12d 7407 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝐴 , 𝐵) + (𝐵 , 𝐴)) = (0 + 0)) |
| 14 | 00id 11355 | . . . . 5 ⊢ (0 + 0) = 0 | |
| 15 | 13, 14 | eqtrdi 2781 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝐴 , 𝐵) + (𝐵 , 𝐴)) = 0) |
| 16 | 15 | oveq2d 7405 | . . 3 ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + 0)) |
| 17 | 2, 1 | cphipcl 25097 | . . . . . . 7 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐴 , 𝐴) ∈ ℂ) |
| 18 | 4, 5, 5, 17 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝐴 , 𝐴) ∈ ℂ) |
| 19 | 2, 1 | cphipcl 25097 | . . . . . . 7 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐵 , 𝐵) ∈ ℂ) |
| 20 | 4, 6, 6, 19 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝐵 , 𝐵) ∈ ℂ) |
| 21 | 18, 20 | addcld 11199 | . . . . 5 ⊢ (𝜑 → ((𝐴 , 𝐴) + (𝐵 , 𝐵)) ∈ ℂ) |
| 22 | 21 | addridd 11380 | . . . 4 ⊢ (𝜑 → (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + 0) = ((𝐴 , 𝐴) + (𝐵 , 𝐵))) |
| 23 | 22 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + 0) = ((𝐴 , 𝐴) + (𝐵 , 𝐵))) |
| 24 | 8, 16, 23 | 3eqtrd 2769 | . 2 ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝐴 + 𝐵) , (𝐴 + 𝐵)) = ((𝐴 , 𝐴) + (𝐵 , 𝐵))) |
| 25 | cphngp 25079 | . . . . . 6 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp) | |
| 26 | ngpgrp 24493 | . . . . . 6 ⊢ (𝑊 ∈ NrmGrp → 𝑊 ∈ Grp) | |
| 27 | 4, 25, 26 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ Grp) |
| 28 | 2, 3, 27, 5, 6 | grpcld 18885 | . . . 4 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ 𝑉) |
| 29 | cphpyth.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑊) | |
| 30 | 2, 1, 29 | nmsq 25100 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 + 𝐵) ∈ 𝑉) → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵))) |
| 31 | 4, 28, 30 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵))) |
| 32 | 31 | adantr 480 | . 2 ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵))) |
| 33 | 2, 1, 29 | nmsq 25100 | . . . . 5 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → ((𝑁‘𝐴)↑2) = (𝐴 , 𝐴)) |
| 34 | 4, 5, 33 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝑁‘𝐴)↑2) = (𝐴 , 𝐴)) |
| 35 | 2, 1, 29 | nmsq 25100 | . . . . 5 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐵 ∈ 𝑉) → ((𝑁‘𝐵)↑2) = (𝐵 , 𝐵)) |
| 36 | 4, 6, 35 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝑁‘𝐵)↑2) = (𝐵 , 𝐵)) |
| 37 | 34, 36 | oveq12d 7407 | . . 3 ⊢ (𝜑 → (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)) = ((𝐴 , 𝐴) + (𝐵 , 𝐵))) |
| 38 | 37 | adantr 480 | . 2 ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)) = ((𝐴 , 𝐴) + (𝐵 , 𝐵))) |
| 39 | 24, 32, 38 | 3eqtr4d 2775 | 1 ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝑁‘(𝐴 + 𝐵))↑2) = (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6513 (class class class)co 7389 ℂcc 11072 0cc0 11074 + caddc 11077 2c2 12242 ↑cexp 14032 Basecbs 17185 +gcplusg 17226 ·𝑖cip 17231 Grpcgrp 18871 normcnm 24470 NrmGrpcngp 24471 ℂPreHilccph 25072 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 ax-addf 11153 ax-mulf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-sup 9399 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-rp 12958 df-fz 13475 df-seq 13973 df-exp 14033 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-0g 17410 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18716 df-grp 18874 df-minusg 18875 df-subg 19061 df-ghm 19151 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-cring 20151 df-oppr 20252 df-dvdsr 20272 df-unit 20273 df-rhm 20387 df-subrg 20485 df-drng 20646 df-staf 20754 df-srng 20755 df-lmod 20774 df-lmhm 20935 df-lvec 21016 df-sra 21086 df-rgmod 21087 df-cnfld 21271 df-phl 21541 df-ngp 24477 df-nlm 24480 df-clm 24969 df-cph 25074 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |