MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphpyth Structured version   Visualization version   GIF version

Theorem cphpyth 24285
Description: The pythagorean theorem for a subcomplex pre-Hilbert space. The square of the norm of the sum of two orthogonal vectors (i.e., whose inner product is 0) is the sum of the squares of their norms. Problem 2 in [Kreyszig] p. 135. This is Metamath 100 proof #4. (Contributed by NM, 17-Apr-2008.) (Revised by SN, 22-Sep-2024.)
Hypotheses
Ref Expression
cphpyth.v 𝑉 = (Base‘𝑊)
cphpyth.h , = (·𝑖𝑊)
cphpyth.p + = (+g𝑊)
cphpyth.n 𝑁 = (norm‘𝑊)
cphpyth.w (𝜑𝑊 ∈ ℂPreHil)
cphpyth.a (𝜑𝐴𝑉)
cphpyth.b (𝜑𝐵𝑉)
Assertion
Ref Expression
cphpyth ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝑁‘(𝐴 + 𝐵))↑2) = (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)))

Proof of Theorem cphpyth
StepHypRef Expression
1 cphpyth.h . . . . 5 , = (·𝑖𝑊)
2 cphpyth.v . . . . 5 𝑉 = (Base‘𝑊)
3 cphpyth.p . . . . 5 + = (+g𝑊)
4 cphpyth.w . . . . 5 (𝜑𝑊 ∈ ℂPreHil)
5 cphpyth.a . . . . 5 (𝜑𝐴𝑉)
6 cphpyth.b . . . . 5 (𝜑𝐵𝑉)
71, 2, 3, 4, 5, 6, 5, 6cph2di 24276 . . . 4 (𝜑 → ((𝐴 + 𝐵) , (𝐴 + 𝐵)) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))))
87adantr 480 . . 3 ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝐴 + 𝐵) , (𝐴 + 𝐵)) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))))
9 simpr 484 . . . . . 6 ((𝜑 ∧ (𝐴 , 𝐵) = 0) → (𝐴 , 𝐵) = 0)
101, 2cphorthcom 24270 . . . . . . . 8 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉) → ((𝐴 , 𝐵) = 0 ↔ (𝐵 , 𝐴) = 0))
114, 5, 6, 10syl3anc 1369 . . . . . . 7 (𝜑 → ((𝐴 , 𝐵) = 0 ↔ (𝐵 , 𝐴) = 0))
1211biimpa 476 . . . . . 6 ((𝜑 ∧ (𝐴 , 𝐵) = 0) → (𝐵 , 𝐴) = 0)
139, 12oveq12d 7273 . . . . 5 ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝐴 , 𝐵) + (𝐵 , 𝐴)) = (0 + 0))
14 00id 11080 . . . . 5 (0 + 0) = 0
1513, 14eqtrdi 2795 . . . 4 ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝐴 , 𝐵) + (𝐵 , 𝐴)) = 0)
1615oveq2d 7271 . . 3 ((𝜑 ∧ (𝐴 , 𝐵) = 0) → (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + 0))
172, 1cphipcl 24260 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐴𝑉) → (𝐴 , 𝐴) ∈ ℂ)
184, 5, 5, 17syl3anc 1369 . . . . . 6 (𝜑 → (𝐴 , 𝐴) ∈ ℂ)
192, 1cphipcl 24260 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ 𝐵𝑉𝐵𝑉) → (𝐵 , 𝐵) ∈ ℂ)
204, 6, 6, 19syl3anc 1369 . . . . . 6 (𝜑 → (𝐵 , 𝐵) ∈ ℂ)
2118, 20addcld 10925 . . . . 5 (𝜑 → ((𝐴 , 𝐴) + (𝐵 , 𝐵)) ∈ ℂ)
2221addid1d 11105 . . . 4 (𝜑 → (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + 0) = ((𝐴 , 𝐴) + (𝐵 , 𝐵)))
2322adantr 480 . . 3 ((𝜑 ∧ (𝐴 , 𝐵) = 0) → (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + 0) = ((𝐴 , 𝐴) + (𝐵 , 𝐵)))
248, 16, 233eqtrd 2782 . 2 ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝐴 + 𝐵) , (𝐴 + 𝐵)) = ((𝐴 , 𝐴) + (𝐵 , 𝐵)))
25 cphngp 24242 . . . . . 6 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)
26 ngpgrp 23661 . . . . . 6 (𝑊 ∈ NrmGrp → 𝑊 ∈ Grp)
274, 25, 263syl 18 . . . . 5 (𝜑𝑊 ∈ Grp)
282, 3, 27, 5, 6grpcld 18505 . . . 4 (𝜑 → (𝐴 + 𝐵) ∈ 𝑉)
29 cphpyth.n . . . . 5 𝑁 = (norm‘𝑊)
302, 1, 29nmsq 24263 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + 𝐵) ∈ 𝑉) → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵)))
314, 28, 30syl2anc 583 . . 3 (𝜑 → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵)))
3231adantr 480 . 2 ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵)))
332, 1, 29nmsq 24263 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉) → ((𝑁𝐴)↑2) = (𝐴 , 𝐴))
344, 5, 33syl2anc 583 . . . 4 (𝜑 → ((𝑁𝐴)↑2) = (𝐴 , 𝐴))
352, 1, 29nmsq 24263 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝐵𝑉) → ((𝑁𝐵)↑2) = (𝐵 , 𝐵))
364, 6, 35syl2anc 583 . . . 4 (𝜑 → ((𝑁𝐵)↑2) = (𝐵 , 𝐵))
3734, 36oveq12d 7273 . . 3 (𝜑 → (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)) = ((𝐴 , 𝐴) + (𝐵 , 𝐵)))
3837adantr 480 . 2 ((𝜑 ∧ (𝐴 , 𝐵) = 0) → (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)) = ((𝐴 , 𝐴) + (𝐵 , 𝐵)))
3924, 32, 383eqtr4d 2788 1 ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝑁‘(𝐴 + 𝐵))↑2) = (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802   + caddc 10805  2c2 11958  cexp 13710  Basecbs 16840  +gcplusg 16888  ·𝑖cip 16893  Grpcgrp 18492  normcnm 23638  NrmGrpcngp 23639  ℂPreHilccph 24235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-subg 18667  df-ghm 18747  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-rnghom 19874  df-drng 19908  df-subrg 19937  df-staf 20020  df-srng 20021  df-lmod 20040  df-lmhm 20199  df-lvec 20280  df-sra 20349  df-rgmod 20350  df-cnfld 20511  df-phl 20743  df-ngp 23645  df-nlm 23648  df-clm 24132  df-cph 24237
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator