| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cphpyth | Structured version Visualization version GIF version | ||
| Description: The pythagorean theorem for a subcomplex pre-Hilbert space. The square of the norm of the sum of two orthogonal vectors (i.e., whose inner product is 0) is the sum of the squares of their norms. Problem 2 in [Kreyszig] p. 135. This is Metamath 100 proof #4. (Contributed by NM, 17-Apr-2008.) (Revised by SN, 22-Sep-2024.) |
| Ref | Expression |
|---|---|
| cphpyth.v | ⊢ 𝑉 = (Base‘𝑊) |
| cphpyth.h | ⊢ , = (·𝑖‘𝑊) |
| cphpyth.p | ⊢ + = (+g‘𝑊) |
| cphpyth.n | ⊢ 𝑁 = (norm‘𝑊) |
| cphpyth.w | ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) |
| cphpyth.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| cphpyth.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| cphpyth | ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝑁‘(𝐴 + 𝐵))↑2) = (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphpyth.h | . . . . 5 ⊢ , = (·𝑖‘𝑊) | |
| 2 | cphpyth.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | cphpyth.p | . . . . 5 ⊢ + = (+g‘𝑊) | |
| 4 | cphpyth.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) | |
| 5 | cphpyth.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 6 | cphpyth.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 7 | 1, 2, 3, 4, 5, 6, 5, 6 | cph2di 25196 | . . . 4 ⊢ (𝜑 → ((𝐴 + 𝐵) , (𝐴 + 𝐵)) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴)))) |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝐴 + 𝐵) , (𝐴 + 𝐵)) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴)))) |
| 9 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → (𝐴 , 𝐵) = 0) | |
| 10 | 1, 2 | cphorthcom 25190 | . . . . . . . 8 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 , 𝐵) = 0 ↔ (𝐵 , 𝐴) = 0)) |
| 11 | 4, 5, 6, 10 | syl3anc 1372 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 , 𝐵) = 0 ↔ (𝐵 , 𝐴) = 0)) |
| 12 | 11 | biimpa 476 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → (𝐵 , 𝐴) = 0) |
| 13 | 9, 12 | oveq12d 7432 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝐴 , 𝐵) + (𝐵 , 𝐴)) = (0 + 0)) |
| 14 | 00id 11419 | . . . . 5 ⊢ (0 + 0) = 0 | |
| 15 | 13, 14 | eqtrdi 2785 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝐴 , 𝐵) + (𝐵 , 𝐴)) = 0) |
| 16 | 15 | oveq2d 7430 | . . 3 ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + 0)) |
| 17 | 2, 1 | cphipcl 25180 | . . . . . . 7 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐴 , 𝐴) ∈ ℂ) |
| 18 | 4, 5, 5, 17 | syl3anc 1372 | . . . . . 6 ⊢ (𝜑 → (𝐴 , 𝐴) ∈ ℂ) |
| 19 | 2, 1 | cphipcl 25180 | . . . . . . 7 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐵 , 𝐵) ∈ ℂ) |
| 20 | 4, 6, 6, 19 | syl3anc 1372 | . . . . . 6 ⊢ (𝜑 → (𝐵 , 𝐵) ∈ ℂ) |
| 21 | 18, 20 | addcld 11263 | . . . . 5 ⊢ (𝜑 → ((𝐴 , 𝐴) + (𝐵 , 𝐵)) ∈ ℂ) |
| 22 | 21 | addridd 11444 | . . . 4 ⊢ (𝜑 → (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + 0) = ((𝐴 , 𝐴) + (𝐵 , 𝐵))) |
| 23 | 22 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + 0) = ((𝐴 , 𝐴) + (𝐵 , 𝐵))) |
| 24 | 8, 16, 23 | 3eqtrd 2773 | . 2 ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝐴 + 𝐵) , (𝐴 + 𝐵)) = ((𝐴 , 𝐴) + (𝐵 , 𝐵))) |
| 25 | cphngp 25162 | . . . . . 6 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp) | |
| 26 | ngpgrp 24575 | . . . . . 6 ⊢ (𝑊 ∈ NrmGrp → 𝑊 ∈ Grp) | |
| 27 | 4, 25, 26 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ Grp) |
| 28 | 2, 3, 27, 5, 6 | grpcld 18939 | . . . 4 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ 𝑉) |
| 29 | cphpyth.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑊) | |
| 30 | 2, 1, 29 | nmsq 25183 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 + 𝐵) ∈ 𝑉) → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵))) |
| 31 | 4, 28, 30 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵))) |
| 32 | 31 | adantr 480 | . 2 ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵))) |
| 33 | 2, 1, 29 | nmsq 25183 | . . . . 5 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → ((𝑁‘𝐴)↑2) = (𝐴 , 𝐴)) |
| 34 | 4, 5, 33 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝑁‘𝐴)↑2) = (𝐴 , 𝐴)) |
| 35 | 2, 1, 29 | nmsq 25183 | . . . . 5 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐵 ∈ 𝑉) → ((𝑁‘𝐵)↑2) = (𝐵 , 𝐵)) |
| 36 | 4, 6, 35 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝑁‘𝐵)↑2) = (𝐵 , 𝐵)) |
| 37 | 34, 36 | oveq12d 7432 | . . 3 ⊢ (𝜑 → (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)) = ((𝐴 , 𝐴) + (𝐵 , 𝐵))) |
| 38 | 37 | adantr 480 | . 2 ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)) = ((𝐴 , 𝐴) + (𝐵 , 𝐵))) |
| 39 | 24, 32, 38 | 3eqtr4d 2779 | 1 ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝑁‘(𝐴 + 𝐵))↑2) = (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ‘cfv 6542 (class class class)co 7414 ℂcc 11136 0cc0 11138 + caddc 11141 2c2 12304 ↑cexp 14085 Basecbs 17230 +gcplusg 17277 ·𝑖cip 17282 Grpcgrp 18925 normcnm 24552 NrmGrpcngp 24553 ℂPreHilccph 25155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 ax-addf 11217 ax-mulf 11218 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-tpos 8234 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-er 8728 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-sup 9465 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-div 11904 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-7 12317 df-8 12318 df-9 12319 df-n0 12511 df-z 12598 df-dec 12718 df-uz 12862 df-rp 13018 df-fz 13531 df-seq 14026 df-exp 14086 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17257 df-plusg 17290 df-mulr 17291 df-starv 17292 df-sca 17293 df-vsca 17294 df-ip 17295 df-tset 17296 df-ple 17297 df-ds 17299 df-unif 17300 df-0g 17462 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-mhm 18770 df-grp 18928 df-minusg 18929 df-subg 19115 df-ghm 19205 df-cmn 19773 df-abl 19774 df-mgp 20111 df-rng 20123 df-ur 20152 df-ring 20205 df-cring 20206 df-oppr 20307 df-dvdsr 20330 df-unit 20331 df-rhm 20445 df-subrg 20543 df-drng 20704 df-staf 20813 df-srng 20814 df-lmod 20833 df-lmhm 20994 df-lvec 21075 df-sra 21145 df-rgmod 21146 df-cnfld 21332 df-phl 21611 df-ngp 24559 df-nlm 24562 df-clm 25051 df-cph 25157 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |