| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cphpyth | Structured version Visualization version GIF version | ||
| Description: The pythagorean theorem for a subcomplex pre-Hilbert space. The square of the norm of the sum of two orthogonal vectors (i.e., whose inner product is 0) is the sum of the squares of their norms. Problem 2 in [Kreyszig] p. 135. This is Metamath 100 proof #4. (Contributed by NM, 17-Apr-2008.) (Revised by SN, 22-Sep-2024.) |
| Ref | Expression |
|---|---|
| cphpyth.v | ⊢ 𝑉 = (Base‘𝑊) |
| cphpyth.h | ⊢ , = (·𝑖‘𝑊) |
| cphpyth.p | ⊢ + = (+g‘𝑊) |
| cphpyth.n | ⊢ 𝑁 = (norm‘𝑊) |
| cphpyth.w | ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) |
| cphpyth.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| cphpyth.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| cphpyth | ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝑁‘(𝐴 + 𝐵))↑2) = (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphpyth.h | . . . . 5 ⊢ , = (·𝑖‘𝑊) | |
| 2 | cphpyth.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | cphpyth.p | . . . . 5 ⊢ + = (+g‘𝑊) | |
| 4 | cphpyth.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) | |
| 5 | cphpyth.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 6 | cphpyth.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 7 | 1, 2, 3, 4, 5, 6, 5, 6 | cph2di 25140 | . . . 4 ⊢ (𝜑 → ((𝐴 + 𝐵) , (𝐴 + 𝐵)) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴)))) |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝐴 + 𝐵) , (𝐴 + 𝐵)) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴)))) |
| 9 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → (𝐴 , 𝐵) = 0) | |
| 10 | 1, 2 | cphorthcom 25134 | . . . . . . . 8 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 , 𝐵) = 0 ↔ (𝐵 , 𝐴) = 0)) |
| 11 | 4, 5, 6, 10 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 , 𝐵) = 0 ↔ (𝐵 , 𝐴) = 0)) |
| 12 | 11 | biimpa 476 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → (𝐵 , 𝐴) = 0) |
| 13 | 9, 12 | oveq12d 7387 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝐴 , 𝐵) + (𝐵 , 𝐴)) = (0 + 0)) |
| 14 | 00id 11325 | . . . . 5 ⊢ (0 + 0) = 0 | |
| 15 | 13, 14 | eqtrdi 2780 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝐴 , 𝐵) + (𝐵 , 𝐴)) = 0) |
| 16 | 15 | oveq2d 7385 | . . 3 ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + 0)) |
| 17 | 2, 1 | cphipcl 25124 | . . . . . . 7 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐴 , 𝐴) ∈ ℂ) |
| 18 | 4, 5, 5, 17 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝐴 , 𝐴) ∈ ℂ) |
| 19 | 2, 1 | cphipcl 25124 | . . . . . . 7 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐵 , 𝐵) ∈ ℂ) |
| 20 | 4, 6, 6, 19 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝐵 , 𝐵) ∈ ℂ) |
| 21 | 18, 20 | addcld 11169 | . . . . 5 ⊢ (𝜑 → ((𝐴 , 𝐴) + (𝐵 , 𝐵)) ∈ ℂ) |
| 22 | 21 | addridd 11350 | . . . 4 ⊢ (𝜑 → (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + 0) = ((𝐴 , 𝐴) + (𝐵 , 𝐵))) |
| 23 | 22 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + 0) = ((𝐴 , 𝐴) + (𝐵 , 𝐵))) |
| 24 | 8, 16, 23 | 3eqtrd 2768 | . 2 ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝐴 + 𝐵) , (𝐴 + 𝐵)) = ((𝐴 , 𝐴) + (𝐵 , 𝐵))) |
| 25 | cphngp 25106 | . . . . . 6 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp) | |
| 26 | ngpgrp 24520 | . . . . . 6 ⊢ (𝑊 ∈ NrmGrp → 𝑊 ∈ Grp) | |
| 27 | 4, 25, 26 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ Grp) |
| 28 | 2, 3, 27, 5, 6 | grpcld 18861 | . . . 4 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ 𝑉) |
| 29 | cphpyth.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑊) | |
| 30 | 2, 1, 29 | nmsq 25127 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 + 𝐵) ∈ 𝑉) → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵))) |
| 31 | 4, 28, 30 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵))) |
| 32 | 31 | adantr 480 | . 2 ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵))) |
| 33 | 2, 1, 29 | nmsq 25127 | . . . . 5 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → ((𝑁‘𝐴)↑2) = (𝐴 , 𝐴)) |
| 34 | 4, 5, 33 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝑁‘𝐴)↑2) = (𝐴 , 𝐴)) |
| 35 | 2, 1, 29 | nmsq 25127 | . . . . 5 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐵 ∈ 𝑉) → ((𝑁‘𝐵)↑2) = (𝐵 , 𝐵)) |
| 36 | 4, 6, 35 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝑁‘𝐵)↑2) = (𝐵 , 𝐵)) |
| 37 | 34, 36 | oveq12d 7387 | . . 3 ⊢ (𝜑 → (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)) = ((𝐴 , 𝐴) + (𝐵 , 𝐵))) |
| 38 | 37 | adantr 480 | . 2 ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)) = ((𝐴 , 𝐴) + (𝐵 , 𝐵))) |
| 39 | 24, 32, 38 | 3eqtr4d 2774 | 1 ⊢ ((𝜑 ∧ (𝐴 , 𝐵) = 0) → ((𝑁‘(𝐴 + 𝐵))↑2) = (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 0cc0 11044 + caddc 11047 2c2 12217 ↑cexp 14002 Basecbs 17155 +gcplusg 17196 ·𝑖cip 17201 Grpcgrp 18847 normcnm 24497 NrmGrpcngp 24498 ℂPreHilccph 25099 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 ax-mulf 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-rp 12928 df-fz 13445 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17380 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-mhm 18692 df-grp 18850 df-minusg 18851 df-subg 19037 df-ghm 19127 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-rhm 20392 df-subrg 20490 df-drng 20651 df-staf 20759 df-srng 20760 df-lmod 20800 df-lmhm 20961 df-lvec 21042 df-sra 21112 df-rgmod 21113 df-cnfld 21297 df-phl 21568 df-ngp 24504 df-nlm 24507 df-clm 24996 df-cph 25101 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |