![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cphpyth | Structured version Visualization version GIF version |
Description: The pythagorean theorem for a subcomplex pre-Hilbert space. The square of the norm of the sum of two orthogonal vectors (i.e., whose inner product is 0) is the sum of the squares of their norms. Problem 2 in [Kreyszig] p. 135. This is Metamath 100 proof #4. (Contributed by NM, 17-Apr-2008.) (Revised by SN, 22-Sep-2024.) |
Ref | Expression |
---|---|
cphpyth.v | β’ π = (Baseβπ) |
cphpyth.h | β’ , = (Β·πβπ) |
cphpyth.p | β’ + = (+gβπ) |
cphpyth.n | β’ π = (normβπ) |
cphpyth.w | β’ (π β π β βPreHil) |
cphpyth.a | β’ (π β π΄ β π) |
cphpyth.b | β’ (π β π΅ β π) |
Ref | Expression |
---|---|
cphpyth | β’ ((π β§ (π΄ , π΅) = 0) β ((πβ(π΄ + π΅))β2) = (((πβπ΄)β2) + ((πβπ΅)β2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cphpyth.h | . . . . 5 β’ , = (Β·πβπ) | |
2 | cphpyth.v | . . . . 5 β’ π = (Baseβπ) | |
3 | cphpyth.p | . . . . 5 β’ + = (+gβπ) | |
4 | cphpyth.w | . . . . 5 β’ (π β π β βPreHil) | |
5 | cphpyth.a | . . . . 5 β’ (π β π΄ β π) | |
6 | cphpyth.b | . . . . 5 β’ (π β π΅ β π) | |
7 | 1, 2, 3, 4, 5, 6, 5, 6 | cph2di 25085 | . . . 4 β’ (π β ((π΄ + π΅) , (π΄ + π΅)) = (((π΄ , π΄) + (π΅ , π΅)) + ((π΄ , π΅) + (π΅ , π΄)))) |
8 | 7 | adantr 480 | . . 3 β’ ((π β§ (π΄ , π΅) = 0) β ((π΄ + π΅) , (π΄ + π΅)) = (((π΄ , π΄) + (π΅ , π΅)) + ((π΄ , π΅) + (π΅ , π΄)))) |
9 | simpr 484 | . . . . . 6 β’ ((π β§ (π΄ , π΅) = 0) β (π΄ , π΅) = 0) | |
10 | 1, 2 | cphorthcom 25079 | . . . . . . . 8 β’ ((π β βPreHil β§ π΄ β π β§ π΅ β π) β ((π΄ , π΅) = 0 β (π΅ , π΄) = 0)) |
11 | 4, 5, 6, 10 | syl3anc 1368 | . . . . . . 7 β’ (π β ((π΄ , π΅) = 0 β (π΅ , π΄) = 0)) |
12 | 11 | biimpa 476 | . . . . . 6 β’ ((π β§ (π΄ , π΅) = 0) β (π΅ , π΄) = 0) |
13 | 9, 12 | oveq12d 7422 | . . . . 5 β’ ((π β§ (π΄ , π΅) = 0) β ((π΄ , π΅) + (π΅ , π΄)) = (0 + 0)) |
14 | 00id 11390 | . . . . 5 β’ (0 + 0) = 0 | |
15 | 13, 14 | eqtrdi 2782 | . . . 4 β’ ((π β§ (π΄ , π΅) = 0) β ((π΄ , π΅) + (π΅ , π΄)) = 0) |
16 | 15 | oveq2d 7420 | . . 3 β’ ((π β§ (π΄ , π΅) = 0) β (((π΄ , π΄) + (π΅ , π΅)) + ((π΄ , π΅) + (π΅ , π΄))) = (((π΄ , π΄) + (π΅ , π΅)) + 0)) |
17 | 2, 1 | cphipcl 25069 | . . . . . . 7 β’ ((π β βPreHil β§ π΄ β π β§ π΄ β π) β (π΄ , π΄) β β) |
18 | 4, 5, 5, 17 | syl3anc 1368 | . . . . . 6 β’ (π β (π΄ , π΄) β β) |
19 | 2, 1 | cphipcl 25069 | . . . . . . 7 β’ ((π β βPreHil β§ π΅ β π β§ π΅ β π) β (π΅ , π΅) β β) |
20 | 4, 6, 6, 19 | syl3anc 1368 | . . . . . 6 β’ (π β (π΅ , π΅) β β) |
21 | 18, 20 | addcld 11234 | . . . . 5 β’ (π β ((π΄ , π΄) + (π΅ , π΅)) β β) |
22 | 21 | addridd 11415 | . . . 4 β’ (π β (((π΄ , π΄) + (π΅ , π΅)) + 0) = ((π΄ , π΄) + (π΅ , π΅))) |
23 | 22 | adantr 480 | . . 3 β’ ((π β§ (π΄ , π΅) = 0) β (((π΄ , π΄) + (π΅ , π΅)) + 0) = ((π΄ , π΄) + (π΅ , π΅))) |
24 | 8, 16, 23 | 3eqtrd 2770 | . 2 β’ ((π β§ (π΄ , π΅) = 0) β ((π΄ + π΅) , (π΄ + π΅)) = ((π΄ , π΄) + (π΅ , π΅))) |
25 | cphngp 25051 | . . . . . 6 β’ (π β βPreHil β π β NrmGrp) | |
26 | ngpgrp 24458 | . . . . . 6 β’ (π β NrmGrp β π β Grp) | |
27 | 4, 25, 26 | 3syl 18 | . . . . 5 β’ (π β π β Grp) |
28 | 2, 3, 27, 5, 6 | grpcld 18874 | . . . 4 β’ (π β (π΄ + π΅) β π) |
29 | cphpyth.n | . . . . 5 β’ π = (normβπ) | |
30 | 2, 1, 29 | nmsq 25072 | . . . 4 β’ ((π β βPreHil β§ (π΄ + π΅) β π) β ((πβ(π΄ + π΅))β2) = ((π΄ + π΅) , (π΄ + π΅))) |
31 | 4, 28, 30 | syl2anc 583 | . . 3 β’ (π β ((πβ(π΄ + π΅))β2) = ((π΄ + π΅) , (π΄ + π΅))) |
32 | 31 | adantr 480 | . 2 β’ ((π β§ (π΄ , π΅) = 0) β ((πβ(π΄ + π΅))β2) = ((π΄ + π΅) , (π΄ + π΅))) |
33 | 2, 1, 29 | nmsq 25072 | . . . . 5 β’ ((π β βPreHil β§ π΄ β π) β ((πβπ΄)β2) = (π΄ , π΄)) |
34 | 4, 5, 33 | syl2anc 583 | . . . 4 β’ (π β ((πβπ΄)β2) = (π΄ , π΄)) |
35 | 2, 1, 29 | nmsq 25072 | . . . . 5 β’ ((π β βPreHil β§ π΅ β π) β ((πβπ΅)β2) = (π΅ , π΅)) |
36 | 4, 6, 35 | syl2anc 583 | . . . 4 β’ (π β ((πβπ΅)β2) = (π΅ , π΅)) |
37 | 34, 36 | oveq12d 7422 | . . 3 β’ (π β (((πβπ΄)β2) + ((πβπ΅)β2)) = ((π΄ , π΄) + (π΅ , π΅))) |
38 | 37 | adantr 480 | . 2 β’ ((π β§ (π΄ , π΅) = 0) β (((πβπ΄)β2) + ((πβπ΅)β2)) = ((π΄ , π΄) + (π΅ , π΅))) |
39 | 24, 32, 38 | 3eqtr4d 2776 | 1 β’ ((π β§ (π΄ , π΅) = 0) β ((πβ(π΄ + π΅))β2) = (((πβπ΄)β2) + ((πβπ΅)β2))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 βcfv 6536 (class class class)co 7404 βcc 11107 0cc0 11109 + caddc 11112 2c2 12268 βcexp 14029 Basecbs 17150 +gcplusg 17203 Β·πcip 17208 Grpcgrp 18860 normcnm 24435 NrmGrpcngp 24436 βPreHilccph 25044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 ax-mulf 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-tpos 8209 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-z 12560 df-dec 12679 df-uz 12824 df-rp 12978 df-fz 13488 df-seq 13970 df-exp 14030 df-cj 15049 df-re 15050 df-im 15051 df-sqrt 15185 df-abs 15186 df-struct 17086 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-starv 17218 df-sca 17219 df-vsca 17220 df-ip 17221 df-tset 17222 df-ple 17223 df-ds 17225 df-unif 17226 df-0g 17393 df-mgm 18570 df-sgrp 18649 df-mnd 18665 df-mhm 18710 df-grp 18863 df-minusg 18864 df-subg 19047 df-ghm 19136 df-cmn 19699 df-abl 19700 df-mgp 20037 df-rng 20055 df-ur 20084 df-ring 20137 df-cring 20138 df-oppr 20233 df-dvdsr 20256 df-unit 20257 df-rhm 20371 df-subrg 20468 df-drng 20586 df-staf 20685 df-srng 20686 df-lmod 20705 df-lmhm 20867 df-lvec 20948 df-sra 21018 df-rgmod 21019 df-cnfld 21236 df-phl 21514 df-ngp 24442 df-nlm 24445 df-clm 24940 df-cph 25046 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |