MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmmpo Structured version   Visualization version   GIF version

Theorem dmmpo 8070
Description: Domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
Hypotheses
Ref Expression
fmpo.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
fnmpoi.2 𝐶 ∈ V
Assertion
Ref Expression
dmmpo dom 𝐹 = (𝐴 × 𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem dmmpo
StepHypRef Expression
1 fmpo.1 . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
2 fnmpoi.2 . . 3 𝐶 ∈ V
31, 2fnmpoi 8069 . 2 𝐹 Fn (𝐴 × 𝐵)
43fndmi 6642 1 dom 𝐹 = (𝐴 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  Vcvv 3459   × cxp 5652  dom cdm 5654  cmpo 7407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989
This theorem is referenced by:  1div0  11896  1div0OLD  11897  swrd00  14662  swrd0  14676  pfx00  14692  pfx0  14693  repsundef  14789  cshnz  14810  imasvscafn  17551  imasvscaval  17552  iscnp2  23177  xkococnlem  23597  ucnima  24219  ucnprima  24220  tngtopn  24589  1div0apr  30449  smatlem  33828  elunirnmbfm  34283  rrxsphere  48728  oppfrcl  49076
  Copyright terms: Public domain W3C validator