Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmmpo | Structured version Visualization version GIF version |
Description: Domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
Ref | Expression |
---|---|
fmpo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
fnmpoi.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
dmmpo | ⊢ dom 𝐹 = (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpo.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | fnmpoi.2 | . . 3 ⊢ 𝐶 ∈ V | |
3 | 1, 2 | fnmpoi 7796 | . 2 ⊢ 𝐹 Fn (𝐴 × 𝐵) |
4 | 3 | fndmi 6442 | 1 ⊢ dom 𝐹 = (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2114 Vcvv 3399 × cxp 5524 dom cdm 5526 ∈ cmpo 7175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5168 ax-nul 5175 ax-pr 5297 ax-un 7482 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-id 5430 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-fv 6348 df-oprab 7177 df-mpo 7178 df-1st 7717 df-2nd 7718 |
This theorem is referenced by: 1div0 11380 swrd00 14098 swrd0 14112 pfx00 14128 pfx0 14129 repsundef 14225 cshnz 14246 imasvscafn 16916 imasvscaval 16917 iscnp2 21993 xkococnlem 22413 ucnima 23036 ucnprima 23037 tngtopn 23406 1div0apr 28408 smatlem 31322 elunirnmbfm 31793 rrxsphere 45658 |
Copyright terms: Public domain | W3C validator |