Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmmpo | Structured version Visualization version GIF version |
Description: Domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
Ref | Expression |
---|---|
fmpo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
fnmpoi.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
dmmpo | ⊢ dom 𝐹 = (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpo.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | fnmpoi.2 | . . 3 ⊢ 𝐶 ∈ V | |
3 | 1, 2 | fnmpoi 7883 | . 2 ⊢ 𝐹 Fn (𝐴 × 𝐵) |
4 | 3 | fndmi 6521 | 1 ⊢ dom 𝐹 = (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 Vcvv 3422 × cxp 5578 dom cdm 5580 ∈ cmpo 7257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 |
This theorem is referenced by: 1div0 11564 swrd00 14285 swrd0 14299 pfx00 14315 pfx0 14316 repsundef 14412 cshnz 14433 imasvscafn 17165 imasvscaval 17166 iscnp2 22298 xkococnlem 22718 ucnima 23341 ucnprima 23342 tngtopn 23720 1div0apr 28733 smatlem 31649 elunirnmbfm 32120 rrxsphere 45982 |
Copyright terms: Public domain | W3C validator |