Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmmpo | Structured version Visualization version GIF version |
Description: Domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
Ref | Expression |
---|---|
fmpo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
fnmpoi.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
dmmpo | ⊢ dom 𝐹 = (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpo.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | fnmpoi.2 | . . 3 ⊢ 𝐶 ∈ V | |
3 | 1, 2 | fnmpoi 7910 | . 2 ⊢ 𝐹 Fn (𝐴 × 𝐵) |
4 | 3 | fndmi 6537 | 1 ⊢ dom 𝐹 = (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 Vcvv 3432 × cxp 5587 dom cdm 5589 ∈ cmpo 7277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 |
This theorem is referenced by: 1div0 11634 swrd00 14357 swrd0 14371 pfx00 14387 pfx0 14388 repsundef 14484 cshnz 14505 imasvscafn 17248 imasvscaval 17249 iscnp2 22390 xkococnlem 22810 ucnima 23433 ucnprima 23434 tngtopn 23814 1div0apr 28832 smatlem 31747 elunirnmbfm 32220 rrxsphere 46094 |
Copyright terms: Public domain | W3C validator |