MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmmpo Structured version   Visualization version   GIF version

Theorem dmmpo 8006
Description: Domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
Hypotheses
Ref Expression
fmpo.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
fnmpoi.2 𝐶 ∈ V
Assertion
Ref Expression
dmmpo dom 𝐹 = (𝐴 × 𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem dmmpo
StepHypRef Expression
1 fmpo.1 . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
2 fnmpoi.2 . . 3 𝐶 ∈ V
31, 2fnmpoi 8005 . 2 𝐹 Fn (𝐴 × 𝐵)
43fndmi 6586 1 dom 𝐹 = (𝐴 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3436   × cxp 5617  dom cdm 5619  cmpo 7351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925
This theorem is referenced by:  1div0  11779  1div0OLD  11780  swrd00  14551  swrd0  14565  pfx00  14581  pfx0  14582  repsundef  14677  cshnz  14698  imasvscafn  17441  imasvscaval  17442  iscnp2  23124  xkococnlem  23544  ucnima  24166  ucnprima  24167  tngtopn  24536  1div0apr  30412  smatlem  33770  elunirnmbfm  34225  rrxsphere  48743
  Copyright terms: Public domain W3C validator