| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmmpo | Structured version Visualization version GIF version | ||
| Description: Domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
| Ref | Expression |
|---|---|
| fmpo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| fnmpoi.2 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| dmmpo | ⊢ dom 𝐹 = (𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpo.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 2 | fnmpoi.2 | . . 3 ⊢ 𝐶 ∈ V | |
| 3 | 1, 2 | fnmpoi 8095 | . 2 ⊢ 𝐹 Fn (𝐴 × 𝐵) |
| 4 | 3 | fndmi 6672 | 1 ⊢ dom 𝐹 = (𝐴 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 Vcvv 3480 × cxp 5683 dom cdm 5685 ∈ cmpo 7433 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 |
| This theorem is referenced by: 1div0 11922 1div0OLD 11923 swrd00 14682 swrd0 14696 pfx00 14712 pfx0 14713 repsundef 14809 cshnz 14830 imasvscafn 17582 imasvscaval 17583 iscnp2 23247 xkococnlem 23667 ucnima 24290 ucnprima 24291 tngtopn 24671 1div0apr 30487 smatlem 33796 elunirnmbfm 34253 rrxsphere 48669 |
| Copyright terms: Public domain | W3C validator |