MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmmpo Structured version   Visualization version   GIF version

Theorem dmmpo 8004
Description: Domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
Hypotheses
Ref Expression
fmpo.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
fnmpoi.2 𝐶 ∈ V
Assertion
Ref Expression
dmmpo dom 𝐹 = (𝐴 × 𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem dmmpo
StepHypRef Expression
1 fmpo.1 . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
2 fnmpoi.2 . . 3 𝐶 ∈ V
31, 2fnmpoi 8003 . 2 𝐹 Fn (𝐴 × 𝐵)
43fndmi 6607 1 dom 𝐹 = (𝐴 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2107  Vcvv 3446   × cxp 5632  dom cdm 5634  cmpo 7360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ral 3066  df-rex 3075  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-fv 6505  df-oprab 7362  df-mpo 7363  df-1st 7922  df-2nd 7923
This theorem is referenced by:  1div0  11815  swrd00  14533  swrd0  14547  pfx00  14563  pfx0  14564  repsundef  14660  cshnz  14681  imasvscafn  17420  imasvscaval  17421  iscnp2  22593  xkococnlem  23013  ucnima  23636  ucnprima  23637  tngtopn  24017  1div0apr  29415  smatlem  32381  elunirnmbfm  32854  rrxsphere  46841
  Copyright terms: Public domain W3C validator