Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwcl Structured version   Visualization version   GIF version

Theorem cshwcl 14139
 Description: A cyclically shifted word is a word over the same set as for the original word. (Contributed by AV, 16-May-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 27-Oct-2018.)
Assertion
Ref Expression
cshwcl (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 𝑁) ∈ Word 𝑉)

Proof of Theorem cshwcl
StepHypRef Expression
1 cshword 14132 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
2 swrdcl 13986 . . . . . 6 (𝑊 ∈ Word 𝑉 → (𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ∈ Word 𝑉)
3 pfxcl 14018 . . . . . 6 (𝑊 ∈ Word 𝑉 → (𝑊 prefix (𝑁 mod (♯‘𝑊))) ∈ Word 𝑉)
4 ccatcl 13905 . . . . . 6 (((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ∈ Word 𝑉 ∧ (𝑊 prefix (𝑁 mod (♯‘𝑊))) ∈ Word 𝑉) → ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))) ∈ Word 𝑉)
52, 3, 4syl2anc 587 . . . . 5 (𝑊 ∈ Word 𝑉 → ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))) ∈ Word 𝑉)
65adantr 484 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))) ∈ Word 𝑉)
71, 6eqeltrd 2912 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) ∈ Word 𝑉)
87expcom 417 . 2 (𝑁 ∈ ℤ → (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 𝑁) ∈ Word 𝑉))
9 cshnz 14133 . . . 4 𝑁 ∈ ℤ → (𝑊 cyclShift 𝑁) = ∅)
10 wrd0 13870 . . . 4 ∅ ∈ Word 𝑉
119, 10eqeltrdi 2920 . . 3 𝑁 ∈ ℤ → (𝑊 cyclShift 𝑁) ∈ Word 𝑉)
1211a1d 25 . 2 𝑁 ∈ ℤ → (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 𝑁) ∈ Word 𝑉))
138, 12pm2.61i 185 1 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 𝑁) ∈ Word 𝑉)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   ∈ wcel 2115  ∅c0 4266  ⟨cop 4546  ‘cfv 6328  (class class class)co 7130  ℤcz 11959   mod cmo 13220  ♯chash 13674  Word cword 13845   ++ cconcat 13901   substr csubstr 13981   prefix cpfx 14011   cyclShift ccsh 14129 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-oadd 8081  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-card 9344  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-n0 11876  df-z 11960  df-uz 12222  df-fz 12876  df-fzo 13017  df-hash 13675  df-word 13846  df-concat 13902  df-substr 13982  df-pfx 14012  df-csh 14130 This theorem is referenced by:  cshwf  14141  2cshw  14154  3cshw  14159  cshwsiun  16411  crctcshwlkn0  27585  clwwisshclwws  27778  tocycfv  30758
 Copyright terms: Public domain W3C validator