MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cssss Structured version   Visualization version   GIF version

Theorem cssss 21627
Description: A closed subspace is a subset of the base. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
cssss.v 𝑉 = (Base‘𝑊)
cssss.c 𝐶 = (ClSubSp‘𝑊)
Assertion
Ref Expression
cssss (𝑆𝐶𝑆𝑉)

Proof of Theorem cssss
StepHypRef Expression
1 eqid 2729 . . 3 (ocv‘𝑊) = (ocv‘𝑊)
2 cssss.c . . 3 𝐶 = (ClSubSp‘𝑊)
31, 2cssi 21626 . 2 (𝑆𝐶𝑆 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑆)))
4 cssss.v . . 3 𝑉 = (Base‘𝑊)
54, 1ocvss 21612 . 2 ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑆)) ⊆ 𝑉
63, 5eqsstrdi 3988 1 (𝑆𝐶𝑆𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3911  cfv 6499  Basecbs 17155  ocvcocv 21602  ClSubSpccss 21603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-ocv 21605  df-css 21606
This theorem is referenced by:  cssmre  21635  ocvpj  21659  hlhillcs  41945
  Copyright terms: Public domain W3C validator