Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cssss | Structured version Visualization version GIF version |
Description: A closed subspace is a subset of the base. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
cssss.v | ⊢ 𝑉 = (Base‘𝑊) |
cssss.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
Ref | Expression |
---|---|
cssss | ⊢ (𝑆 ∈ 𝐶 → 𝑆 ⊆ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
2 | cssss.c | . . 3 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
3 | 1, 2 | cssi 20651 | . 2 ⊢ (𝑆 ∈ 𝐶 → 𝑆 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑆))) |
4 | cssss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
5 | 4, 1 | ocvss 20637 | . 2 ⊢ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑆)) ⊆ 𝑉 |
6 | 3, 5 | eqsstrdi 3960 | 1 ⊢ (𝑆 ∈ 𝐶 → 𝑆 ⊆ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 ⊆ wss 3871 ‘cfv 6385 Basecbs 16765 ocvcocv 20627 ClSubSpccss 20628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5197 ax-nul 5204 ax-pow 5263 ax-pr 5327 ax-un 7528 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3415 df-dif 3874 df-un 3876 df-in 3878 df-ss 3888 df-nul 4243 df-if 4445 df-pw 4520 df-sn 4547 df-pr 4549 df-op 4553 df-uni 4825 df-br 5059 df-opab 5121 df-mpt 5141 df-id 5460 df-xp 5562 df-rel 5563 df-cnv 5564 df-co 5565 df-dm 5566 df-rn 5567 df-res 5568 df-ima 5569 df-iota 6343 df-fun 6387 df-fn 6388 df-f 6389 df-fv 6393 df-ov 7221 df-ocv 20630 df-css 20631 |
This theorem is referenced by: cssmre 20660 ocvpj 20684 hlhillcs 39714 |
Copyright terms: Public domain | W3C validator |