![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cssss | Structured version Visualization version GIF version |
Description: A closed subspace is a subset of the base. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
cssss.v | ⊢ 𝑉 = (Base‘𝑊) |
cssss.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
Ref | Expression |
---|---|
cssss | ⊢ (𝑆 ∈ 𝐶 → 𝑆 ⊆ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
2 | cssss.c | . . 3 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
3 | 1, 2 | cssi 21727 | . 2 ⊢ (𝑆 ∈ 𝐶 → 𝑆 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑆))) |
4 | cssss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
5 | 4, 1 | ocvss 21713 | . 2 ⊢ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑆)) ⊆ 𝑉 |
6 | 3, 5 | eqsstrdi 4063 | 1 ⊢ (𝑆 ∈ 𝐶 → 𝑆 ⊆ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ‘cfv 6575 Basecbs 17260 ocvcocv 21703 ClSubSpccss 21704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-fv 6583 df-ov 7453 df-ocv 21706 df-css 21707 |
This theorem is referenced by: cssmre 21736 ocvpj 21762 hlhillcs 41921 |
Copyright terms: Public domain | W3C validator |