MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cssss Structured version   Visualization version   GIF version

Theorem cssss 21622
Description: A closed subspace is a subset of the base. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
cssss.v 𝑉 = (Base‘𝑊)
cssss.c 𝐶 = (ClSubSp‘𝑊)
Assertion
Ref Expression
cssss (𝑆𝐶𝑆𝑉)

Proof of Theorem cssss
StepHypRef Expression
1 eqid 2731 . . 3 (ocv‘𝑊) = (ocv‘𝑊)
2 cssss.c . . 3 𝐶 = (ClSubSp‘𝑊)
31, 2cssi 21621 . 2 (𝑆𝐶𝑆 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑆)))
4 cssss.v . . 3 𝑉 = (Base‘𝑊)
54, 1ocvss 21607 . 2 ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑆)) ⊆ 𝑉
63, 5eqsstrdi 3974 1 (𝑆𝐶𝑆𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wss 3897  cfv 6481  Basecbs 17120  ocvcocv 21597  ClSubSpccss 21598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-ocv 21600  df-css 21601
This theorem is referenced by:  cssmre  21630  ocvpj  21654  hlhillcs  42056
  Copyright terms: Public domain W3C validator