![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ocvss | Structured version Visualization version GIF version |
Description: The orthocomplement of a subset is a subset of the base. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
ocvss.v | ⊢ 𝑉 = (Base‘𝑊) |
ocvss.o | ⊢ ⊥ = (ocv‘𝑊) |
Ref | Expression |
---|---|
ocvss | ⊢ ( ⊥ ‘𝑆) ⊆ 𝑉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ocvss.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | eqid 2740 | . . . 4 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
3 | eqid 2740 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
4 | eqid 2740 | . . . 4 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
5 | ocvss.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
6 | 1, 2, 3, 4, 5 | elocv 21709 | . . 3 ⊢ (𝑥 ∈ ( ⊥ ‘𝑆) ↔ (𝑆 ⊆ 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
7 | 6 | simp2bi 1146 | . 2 ⊢ (𝑥 ∈ ( ⊥ ‘𝑆) → 𝑥 ∈ 𝑉) |
8 | 7 | ssriv 4012 | 1 ⊢ ( ⊥ ‘𝑆) ⊆ 𝑉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Scalarcsca 17314 ·𝑖cip 17316 0gc0g 17499 ocvcocv 21701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-ocv 21704 |
This theorem is referenced by: ocvocv 21712 ocvlss 21713 ocvlsp 21717 ocv1 21720 cssval 21723 cssss 21726 ocvcss 21728 cssincl 21729 csslss 21732 lsmcss 21733 mrccss 21735 pjcss 21759 csscld 25302 clsocv 25303 |
Copyright terms: Public domain | W3C validator |