![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ocvss | Structured version Visualization version GIF version |
Description: The orthocomplement of a subset is a subset of the base. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
ocvss.v | ⊢ 𝑉 = (Base‘𝑊) |
ocvss.o | ⊢ ⊥ = (ocv‘𝑊) |
Ref | Expression |
---|---|
ocvss | ⊢ ( ⊥ ‘𝑆) ⊆ 𝑉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ocvss.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | eqid 2778 | . . . 4 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
3 | eqid 2778 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
4 | eqid 2778 | . . . 4 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
5 | ocvss.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
6 | 1, 2, 3, 4, 5 | elocv 20411 | . . 3 ⊢ (𝑥 ∈ ( ⊥ ‘𝑆) ↔ (𝑆 ⊆ 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
7 | 6 | simp2bi 1137 | . 2 ⊢ (𝑥 ∈ ( ⊥ ‘𝑆) → 𝑥 ∈ 𝑉) |
8 | 7 | ssriv 3825 | 1 ⊢ ( ⊥ ‘𝑆) ⊆ 𝑉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1601 ∈ wcel 2107 ∀wral 3090 ⊆ wss 3792 ‘cfv 6135 (class class class)co 6922 Basecbs 16255 Scalarcsca 16341 ·𝑖cip 16343 0gc0g 16486 ocvcocv 20403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-fv 6143 df-ov 6925 df-ocv 20406 |
This theorem is referenced by: ocvocv 20414 ocvlss 20415 ocvlsp 20419 ocv1 20422 cssval 20425 cssss 20428 ocvcss 20430 cssincl 20431 csslss 20434 lsmcss 20435 mrccss 20437 pjcss 20459 csscld 23455 clsocv 23456 |
Copyright terms: Public domain | W3C validator |