| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ocvss | Structured version Visualization version GIF version | ||
| Description: The orthocomplement of a subset is a subset of the base. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| ocvss.v | ⊢ 𝑉 = (Base‘𝑊) |
| ocvss.o | ⊢ ⊥ = (ocv‘𝑊) |
| Ref | Expression |
|---|---|
| ocvss | ⊢ ( ⊥ ‘𝑆) ⊆ 𝑉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocvss.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | eqid 2733 | . . . 4 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 3 | eqid 2733 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 4 | eqid 2733 | . . . 4 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 5 | ocvss.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | elocv 21607 | . . 3 ⊢ (𝑥 ∈ ( ⊥ ‘𝑆) ↔ (𝑆 ⊆ 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
| 7 | 6 | simp2bi 1146 | . 2 ⊢ (𝑥 ∈ ( ⊥ ‘𝑆) → 𝑥 ∈ 𝑉) |
| 8 | 7 | ssriv 3934 | 1 ⊢ ( ⊥ ‘𝑆) ⊆ 𝑉 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 ∀wral 3048 ⊆ wss 3898 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 Scalarcsca 17166 ·𝑖cip 17168 0gc0g 17345 ocvcocv 21599 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 df-ocv 21602 |
| This theorem is referenced by: ocvocv 21610 ocvlss 21611 ocvlsp 21615 ocv1 21618 cssval 21621 cssss 21624 ocvcss 21626 cssincl 21627 csslss 21630 lsmcss 21631 mrccss 21633 pjcss 21655 csscld 25177 clsocv 25178 |
| Copyright terms: Public domain | W3C validator |