Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvss Structured version   Visualization version   GIF version

Theorem ocvss 20363
 Description: The orthocomplement of a subset is a subset of the base. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ocvss.v 𝑉 = (Base‘𝑊)
ocvss.o = (ocv‘𝑊)
Assertion
Ref Expression
ocvss ( 𝑆) ⊆ 𝑉

Proof of Theorem ocvss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ocvss.v . . . 4 𝑉 = (Base‘𝑊)
2 eqid 2801 . . . 4 (·𝑖𝑊) = (·𝑖𝑊)
3 eqid 2801 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
4 eqid 2801 . . . 4 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
5 ocvss.o . . . 4 = (ocv‘𝑊)
61, 2, 3, 4, 5elocv 20361 . . 3 (𝑥 ∈ ( 𝑆) ↔ (𝑆𝑉𝑥𝑉 ∧ ∀𝑦𝑆 (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
76simp2bi 1143 . 2 (𝑥 ∈ ( 𝑆) → 𝑥𝑉)
87ssriv 3922 1 ( 𝑆) ⊆ 𝑉
 Colors of variables: wff setvar class Syntax hints:   = wceq 1538   ∈ wcel 2112  ∀wral 3109   ⊆ wss 3884  ‘cfv 6328  (class class class)co 7139  Basecbs 16479  Scalarcsca 16564  ·𝑖cip 16566  0gc0g 16709  ocvcocv 20353 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-fv 6336  df-ov 7142  df-ocv 20356 This theorem is referenced by:  ocvocv  20364  ocvlss  20365  ocvlsp  20369  ocv1  20372  cssval  20375  cssss  20378  ocvcss  20380  cssincl  20381  csslss  20384  lsmcss  20385  mrccss  20387  pjcss  20409  csscld  23857  clsocv  23858
 Copyright terms: Public domain W3C validator