MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvss Structured version   Visualization version   GIF version

Theorem ocvss 21711
Description: The orthocomplement of a subset is a subset of the base. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ocvss.v 𝑉 = (Base‘𝑊)
ocvss.o = (ocv‘𝑊)
Assertion
Ref Expression
ocvss ( 𝑆) ⊆ 𝑉

Proof of Theorem ocvss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ocvss.v . . . 4 𝑉 = (Base‘𝑊)
2 eqid 2740 . . . 4 (·𝑖𝑊) = (·𝑖𝑊)
3 eqid 2740 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
4 eqid 2740 . . . 4 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
5 ocvss.o . . . 4 = (ocv‘𝑊)
61, 2, 3, 4, 5elocv 21709 . . 3 (𝑥 ∈ ( 𝑆) ↔ (𝑆𝑉𝑥𝑉 ∧ ∀𝑦𝑆 (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
76simp2bi 1146 . 2 (𝑥 ∈ ( 𝑆) → 𝑥𝑉)
87ssriv 4012 1 ( 𝑆) ⊆ 𝑉
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  wral 3067  wss 3976  cfv 6573  (class class class)co 7448  Basecbs 17258  Scalarcsca 17314  ·𝑖cip 17316  0gc0g 17499  ocvcocv 21701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-ocv 21704
This theorem is referenced by:  ocvocv  21712  ocvlss  21713  ocvlsp  21717  ocv1  21720  cssval  21723  cssss  21726  ocvcss  21728  cssincl  21729  csslss  21732  lsmcss  21733  mrccss  21735  pjcss  21759  csscld  25302  clsocv  25303
  Copyright terms: Public domain W3C validator