MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvss Structured version   Visualization version   GIF version

Theorem ocvss 20413
Description: The orthocomplement of a subset is a subset of the base. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ocvss.v 𝑉 = (Base‘𝑊)
ocvss.o = (ocv‘𝑊)
Assertion
Ref Expression
ocvss ( 𝑆) ⊆ 𝑉

Proof of Theorem ocvss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ocvss.v . . . 4 𝑉 = (Base‘𝑊)
2 eqid 2778 . . . 4 (·𝑖𝑊) = (·𝑖𝑊)
3 eqid 2778 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
4 eqid 2778 . . . 4 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
5 ocvss.o . . . 4 = (ocv‘𝑊)
61, 2, 3, 4, 5elocv 20411 . . 3 (𝑥 ∈ ( 𝑆) ↔ (𝑆𝑉𝑥𝑉 ∧ ∀𝑦𝑆 (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
76simp2bi 1137 . 2 (𝑥 ∈ ( 𝑆) → 𝑥𝑉)
87ssriv 3825 1 ( 𝑆) ⊆ 𝑉
Colors of variables: wff setvar class
Syntax hints:   = wceq 1601  wcel 2107  wral 3090  wss 3792  cfv 6135  (class class class)co 6922  Basecbs 16255  Scalarcsca 16341  ·𝑖cip 16343  0gc0g 16486  ocvcocv 20403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-fv 6143  df-ov 6925  df-ocv 20406
This theorem is referenced by:  ocvocv  20414  ocvlss  20415  ocvlsp  20419  ocv1  20422  cssval  20425  cssss  20428  ocvcss  20430  cssincl  20431  csslss  20434  lsmcss  20435  mrccss  20437  pjcss  20459  csscld  23455  clsocv  23456
  Copyright terms: Public domain W3C validator