MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvss Structured version   Visualization version   GIF version

Theorem ocvss 21630
Description: The orthocomplement of a subset is a subset of the base. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ocvss.v 𝑉 = (Base‘𝑊)
ocvss.o = (ocv‘𝑊)
Assertion
Ref Expression
ocvss ( 𝑆) ⊆ 𝑉

Proof of Theorem ocvss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ocvss.v . . . 4 𝑉 = (Base‘𝑊)
2 eqid 2735 . . . 4 (·𝑖𝑊) = (·𝑖𝑊)
3 eqid 2735 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
4 eqid 2735 . . . 4 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
5 ocvss.o . . . 4 = (ocv‘𝑊)
61, 2, 3, 4, 5elocv 21628 . . 3 (𝑥 ∈ ( 𝑆) ↔ (𝑆𝑉𝑥𝑉 ∧ ∀𝑦𝑆 (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
76simp2bi 1146 . 2 (𝑥 ∈ ( 𝑆) → 𝑥𝑉)
87ssriv 3962 1 ( 𝑆) ⊆ 𝑉
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  wral 3051  wss 3926  cfv 6531  (class class class)co 7405  Basecbs 17228  Scalarcsca 17274  ·𝑖cip 17276  0gc0g 17453  ocvcocv 21620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-ov 7408  df-ocv 21623
This theorem is referenced by:  ocvocv  21631  ocvlss  21632  ocvlsp  21636  ocv1  21639  cssval  21642  cssss  21645  ocvcss  21647  cssincl  21648  csslss  21651  lsmcss  21652  mrccss  21654  pjcss  21676  csscld  25201  clsocv  25202
  Copyright terms: Public domain W3C validator