| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscss2 | Structured version Visualization version GIF version | ||
| Description: It is sufficient to prove that the double orthocomplement is a subset of the target set to show that the set is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| cssss.v | ⊢ 𝑉 = (Base‘𝑊) |
| cssss.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
| ocvcss.o | ⊢ ⊥ = (ocv‘𝑊) |
| Ref | Expression |
|---|---|
| iscss2 | ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝑆 ∈ 𝐶 ↔ ( ⊥ ‘( ⊥ ‘𝑆)) ⊆ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocvcss.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
| 2 | cssss.c | . . . 4 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
| 3 | 1, 2 | iscss 21624 | . . 3 ⊢ (𝑊 ∈ PreHil → (𝑆 ∈ 𝐶 ↔ 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)))) |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝑆 ∈ 𝐶 ↔ 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)))) |
| 5 | cssss.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 6 | 5, 1 | ocvocv 21612 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆))) |
| 7 | eqss 3946 | . . . 4 ⊢ (𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)) ↔ (𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆)) ∧ ( ⊥ ‘( ⊥ ‘𝑆)) ⊆ 𝑆)) | |
| 8 | 7 | baib 535 | . . 3 ⊢ (𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆)) → (𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)) ↔ ( ⊥ ‘( ⊥ ‘𝑆)) ⊆ 𝑆)) |
| 9 | 6, 8 | syl 17 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)) ↔ ( ⊥ ‘( ⊥ ‘𝑆)) ⊆ 𝑆)) |
| 10 | 4, 9 | bitrd 279 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝑆 ∈ 𝐶 ↔ ( ⊥ ‘( ⊥ ‘𝑆)) ⊆ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 ‘cfv 6488 Basecbs 17124 PreHilcphl 21565 ocvcocv 21601 ClSubSpccss 21602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-tpos 8164 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-map 8760 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-plusg 17178 df-mulr 17179 df-sca 17181 df-vsca 17182 df-ip 17183 df-0g 17349 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-mhm 18695 df-grp 18853 df-ghm 19129 df-mgp 20063 df-ur 20104 df-ring 20157 df-oppr 20259 df-rhm 20394 df-staf 20758 df-srng 20759 df-lmod 20799 df-lmhm 20960 df-lvec 21041 df-sra 21111 df-rgmod 21112 df-phl 21567 df-ocv 21604 df-css 21605 |
| This theorem is referenced by: ocvcss 21628 lsmcss 21633 cssmre 21634 |
| Copyright terms: Public domain | W3C validator |