| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscss2 | Structured version Visualization version GIF version | ||
| Description: It is sufficient to prove that the double orthocomplement is a subset of the target set to show that the set is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| cssss.v | ⊢ 𝑉 = (Base‘𝑊) |
| cssss.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
| ocvcss.o | ⊢ ⊥ = (ocv‘𝑊) |
| Ref | Expression |
|---|---|
| iscss2 | ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝑆 ∈ 𝐶 ↔ ( ⊥ ‘( ⊥ ‘𝑆)) ⊆ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocvcss.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
| 2 | cssss.c | . . . 4 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
| 3 | 1, 2 | iscss 21701 | . . 3 ⊢ (𝑊 ∈ PreHil → (𝑆 ∈ 𝐶 ↔ 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)))) |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝑆 ∈ 𝐶 ↔ 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)))) |
| 5 | cssss.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 6 | 5, 1 | ocvocv 21689 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆))) |
| 7 | eqss 3999 | . . . 4 ⊢ (𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)) ↔ (𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆)) ∧ ( ⊥ ‘( ⊥ ‘𝑆)) ⊆ 𝑆)) | |
| 8 | 7 | baib 535 | . . 3 ⊢ (𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆)) → (𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)) ↔ ( ⊥ ‘( ⊥ ‘𝑆)) ⊆ 𝑆)) |
| 9 | 6, 8 | syl 17 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)) ↔ ( ⊥ ‘( ⊥ ‘𝑆)) ⊆ 𝑆)) |
| 10 | 4, 9 | bitrd 279 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝑆 ∈ 𝐶 ↔ ( ⊥ ‘( ⊥ ‘𝑆)) ⊆ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3951 ‘cfv 6561 Basecbs 17247 PreHilcphl 21642 ocvcocv 21678 ClSubSpccss 21679 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-tpos 8251 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-grp 18954 df-ghm 19231 df-mgp 20138 df-ur 20179 df-ring 20232 df-oppr 20334 df-rhm 20472 df-staf 20840 df-srng 20841 df-lmod 20860 df-lmhm 21021 df-lvec 21102 df-sra 21172 df-rgmod 21173 df-phl 21644 df-ocv 21681 df-css 21682 |
| This theorem is referenced by: ocvcss 21705 lsmcss 21710 cssmre 21711 |
| Copyright terms: Public domain | W3C validator |