![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscss2 | Structured version Visualization version GIF version |
Description: It is sufficient to prove that the double orthocomplement is a subset of the target set to show that the set is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
cssss.v | ⊢ 𝑉 = (Base‘𝑊) |
cssss.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
ocvcss.o | ⊢ ⊥ = (ocv‘𝑊) |
Ref | Expression |
---|---|
iscss2 | ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝑆 ∈ 𝐶 ↔ ( ⊥ ‘( ⊥ ‘𝑆)) ⊆ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ocvcss.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
2 | cssss.c | . . . 4 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
3 | 1, 2 | iscss 21227 | . . 3 ⊢ (𝑊 ∈ PreHil → (𝑆 ∈ 𝐶 ↔ 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)))) |
4 | 3 | adantr 481 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝑆 ∈ 𝐶 ↔ 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)))) |
5 | cssss.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
6 | 5, 1 | ocvocv 21215 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆))) |
7 | eqss 3996 | . . . 4 ⊢ (𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)) ↔ (𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆)) ∧ ( ⊥ ‘( ⊥ ‘𝑆)) ⊆ 𝑆)) | |
8 | 7 | baib 536 | . . 3 ⊢ (𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆)) → (𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)) ↔ ( ⊥ ‘( ⊥ ‘𝑆)) ⊆ 𝑆)) |
9 | 6, 8 | syl 17 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)) ↔ ( ⊥ ‘( ⊥ ‘𝑆)) ⊆ 𝑆)) |
10 | 4, 9 | bitrd 278 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝑆 ∈ 𝐶 ↔ ( ⊥ ‘( ⊥ ‘𝑆)) ⊆ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ⊆ wss 3947 ‘cfv 6540 Basecbs 17140 PreHilcphl 21168 ocvcocv 21204 ClSubSpccss 21205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-grp 18818 df-ghm 19084 df-mgp 19982 df-ur 19999 df-ring 20051 df-oppr 20142 df-rnghom 20243 df-staf 20445 df-srng 20446 df-lmod 20465 df-lmhm 20625 df-lvec 20706 df-sra 20777 df-rgmod 20778 df-phl 21170 df-ocv 21207 df-css 21208 |
This theorem is referenced by: ocvcss 21231 lsmcss 21236 cssmre 21237 |
Copyright terms: Public domain | W3C validator |