Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cssi | Structured version Visualization version GIF version |
Description: Property of a closed subspace (of a pre-Hilbert space). (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
cssval.o | ⊢ ⊥ = (ocv‘𝑊) |
cssval.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
Ref | Expression |
---|---|
cssi | ⊢ (𝑆 ∈ 𝐶 → 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6856 | . . . 4 ⊢ (𝑆 ∈ (ClSubSp‘𝑊) → 𝑊 ∈ dom ClSubSp) | |
2 | cssval.c | . . . 4 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
3 | 1, 2 | eleq2s 2855 | . . 3 ⊢ (𝑆 ∈ 𝐶 → 𝑊 ∈ dom ClSubSp) |
4 | cssval.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
5 | 4, 2 | iscss 20986 | . . 3 ⊢ (𝑊 ∈ dom ClSubSp → (𝑆 ∈ 𝐶 ↔ 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)))) |
6 | 3, 5 | syl 17 | . 2 ⊢ (𝑆 ∈ 𝐶 → (𝑆 ∈ 𝐶 ↔ 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)))) |
7 | 6 | ibi 266 | 1 ⊢ (𝑆 ∈ 𝐶 → 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 dom cdm 5614 ‘cfv 6473 ocvcocv 20963 ClSubSpccss 20964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-fv 6481 df-ov 7332 df-ocv 20966 df-css 20967 |
This theorem is referenced by: cssss 20988 cssincl 20991 csslss 20994 cssmre 20996 mrccss 20997 ocvpj 21022 csscld 24511 |
Copyright terms: Public domain | W3C validator |