MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cssi Structured version   Visualization version   GIF version

Theorem cssi 21104
Description: Property of a closed subspace (of a pre-Hilbert space). (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
cssval.o = (ocv‘𝑊)
cssval.c 𝐶 = (ClSubSp‘𝑊)
Assertion
Ref Expression
cssi (𝑆𝐶𝑆 = ( ‘( 𝑆)))

Proof of Theorem cssi
StepHypRef Expression
1 elfvdm 6880 . . . 4 (𝑆 ∈ (ClSubSp‘𝑊) → 𝑊 ∈ dom ClSubSp)
2 cssval.c . . . 4 𝐶 = (ClSubSp‘𝑊)
31, 2eleq2s 2852 . . 3 (𝑆𝐶𝑊 ∈ dom ClSubSp)
4 cssval.o . . . 4 = (ocv‘𝑊)
54, 2iscss 21103 . . 3 (𝑊 ∈ dom ClSubSp → (𝑆𝐶𝑆 = ( ‘( 𝑆))))
63, 5syl 17 . 2 (𝑆𝐶 → (𝑆𝐶𝑆 = ( ‘( 𝑆))))
76ibi 267 1 (𝑆𝐶𝑆 = ( ‘( 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  wcel 2107  dom cdm 5634  cfv 6497  ocvcocv 21080  ClSubSpccss 21081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-fv 6505  df-ov 7361  df-ocv 21083  df-css 21084
This theorem is referenced by:  cssss  21105  cssincl  21108  csslss  21111  cssmre  21113  mrccss  21114  ocvpj  21139  csscld  24629
  Copyright terms: Public domain W3C validator