![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cssi | Structured version Visualization version GIF version |
Description: Property of a closed subspace (of a pre-Hilbert space). (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
cssval.o | ⊢ ⊥ = (ocv‘𝑊) |
cssval.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
Ref | Expression |
---|---|
cssi | ⊢ (𝑆 ∈ 𝐶 → 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6528 | . . . 4 ⊢ (𝑆 ∈ (ClSubSp‘𝑊) → 𝑊 ∈ dom ClSubSp) | |
2 | cssval.c | . . . 4 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
3 | 1, 2 | eleq2s 2878 | . . 3 ⊢ (𝑆 ∈ 𝐶 → 𝑊 ∈ dom ClSubSp) |
4 | cssval.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
5 | 4, 2 | iscss 20541 | . . 3 ⊢ (𝑊 ∈ dom ClSubSp → (𝑆 ∈ 𝐶 ↔ 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)))) |
6 | 3, 5 | syl 17 | . 2 ⊢ (𝑆 ∈ 𝐶 → (𝑆 ∈ 𝐶 ↔ 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)))) |
7 | 6 | ibi 259 | 1 ⊢ (𝑆 ∈ 𝐶 → 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1507 ∈ wcel 2050 dom cdm 5403 ‘cfv 6185 ocvcocv 20518 ClSubSpccss 20519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3676 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-br 4926 df-opab 4988 df-mpt 5005 df-id 5308 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-fv 6193 df-ov 6977 df-ocv 20521 df-css 20522 |
This theorem is referenced by: cssss 20543 cssincl 20546 csslss 20549 cssmre 20551 mrccss 20552 ocvpj 20575 csscld 23567 |
Copyright terms: Public domain | W3C validator |