MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cssi Structured version   Visualization version   GIF version

Theorem cssi 21599
Description: Property of a closed subspace (of a pre-Hilbert space). (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
cssval.o = (ocv‘𝑊)
cssval.c 𝐶 = (ClSubSp‘𝑊)
Assertion
Ref Expression
cssi (𝑆𝐶𝑆 = ( ‘( 𝑆)))

Proof of Theorem cssi
StepHypRef Expression
1 elfvdm 6897 . . . 4 (𝑆 ∈ (ClSubSp‘𝑊) → 𝑊 ∈ dom ClSubSp)
2 cssval.c . . . 4 𝐶 = (ClSubSp‘𝑊)
31, 2eleq2s 2847 . . 3 (𝑆𝐶𝑊 ∈ dom ClSubSp)
4 cssval.o . . . 4 = (ocv‘𝑊)
54, 2iscss 21598 . . 3 (𝑊 ∈ dom ClSubSp → (𝑆𝐶𝑆 = ( ‘( 𝑆))))
63, 5syl 17 . 2 (𝑆𝐶 → (𝑆𝐶𝑆 = ( ‘( 𝑆))))
76ibi 267 1 (𝑆𝐶𝑆 = ( ‘( 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  dom cdm 5640  cfv 6513  ocvcocv 21575  ClSubSpccss 21576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-fv 6521  df-ov 7392  df-ocv 21578  df-css 21579
This theorem is referenced by:  cssss  21600  cssincl  21603  csslss  21606  cssmre  21608  mrccss  21609  ocvpj  21632  csscld  25155
  Copyright terms: Public domain W3C validator