MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cssi Structured version   Visualization version   GIF version

Theorem cssi 21656
Description: Property of a closed subspace (of a pre-Hilbert space). (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
cssval.o = (ocv‘𝑊)
cssval.c 𝐶 = (ClSubSp‘𝑊)
Assertion
Ref Expression
cssi (𝑆𝐶𝑆 = ( ‘( 𝑆)))

Proof of Theorem cssi
StepHypRef Expression
1 elfvdm 6923 . . . 4 (𝑆 ∈ (ClSubSp‘𝑊) → 𝑊 ∈ dom ClSubSp)
2 cssval.c . . . 4 𝐶 = (ClSubSp‘𝑊)
31, 2eleq2s 2851 . . 3 (𝑆𝐶𝑊 ∈ dom ClSubSp)
4 cssval.o . . . 4 = (ocv‘𝑊)
54, 2iscss 21655 . . 3 (𝑊 ∈ dom ClSubSp → (𝑆𝐶𝑆 = ( ‘( 𝑆))))
63, 5syl 17 . 2 (𝑆𝐶 → (𝑆𝐶𝑆 = ( ‘( 𝑆))))
76ibi 267 1 (𝑆𝐶𝑆 = ( ‘( 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  wcel 2107  dom cdm 5665  cfv 6541  ocvcocv 21632  ClSubSpccss 21633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-fv 6549  df-ov 7416  df-ocv 21635  df-css 21636
This theorem is referenced by:  cssss  21657  cssincl  21660  csslss  21663  cssmre  21665  mrccss  21666  ocvpj  21691  csscld  25219
  Copyright terms: Public domain W3C validator