MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cssi Structured version   Visualization version   GIF version

Theorem cssi 20987
Description: Property of a closed subspace (of a pre-Hilbert space). (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
cssval.o = (ocv‘𝑊)
cssval.c 𝐶 = (ClSubSp‘𝑊)
Assertion
Ref Expression
cssi (𝑆𝐶𝑆 = ( ‘( 𝑆)))

Proof of Theorem cssi
StepHypRef Expression
1 elfvdm 6856 . . . 4 (𝑆 ∈ (ClSubSp‘𝑊) → 𝑊 ∈ dom ClSubSp)
2 cssval.c . . . 4 𝐶 = (ClSubSp‘𝑊)
31, 2eleq2s 2855 . . 3 (𝑆𝐶𝑊 ∈ dom ClSubSp)
4 cssval.o . . . 4 = (ocv‘𝑊)
54, 2iscss 20986 . . 3 (𝑊 ∈ dom ClSubSp → (𝑆𝐶𝑆 = ( ‘( 𝑆))))
63, 5syl 17 . 2 (𝑆𝐶 → (𝑆𝐶𝑆 = ( ‘( 𝑆))))
76ibi 266 1 (𝑆𝐶𝑆 = ( ‘( 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1540  wcel 2105  dom cdm 5614  cfv 6473  ocvcocv 20963  ClSubSpccss 20964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-br 5090  df-opab 5152  df-mpt 5173  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-fv 6481  df-ov 7332  df-ocv 20966  df-css 20967
This theorem is referenced by:  cssss  20988  cssincl  20991  csslss  20994  cssmre  20996  mrccss  20997  ocvpj  21022  csscld  24511
  Copyright terms: Public domain W3C validator