| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cssi | Structured version Visualization version GIF version | ||
| Description: Property of a closed subspace (of a pre-Hilbert space). (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| cssval.o | ⊢ ⊥ = (ocv‘𝑊) |
| cssval.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| cssi | ⊢ (𝑆 ∈ 𝐶 → 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6897 | . . . 4 ⊢ (𝑆 ∈ (ClSubSp‘𝑊) → 𝑊 ∈ dom ClSubSp) | |
| 2 | cssval.c | . . . 4 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
| 3 | 1, 2 | eleq2s 2847 | . . 3 ⊢ (𝑆 ∈ 𝐶 → 𝑊 ∈ dom ClSubSp) |
| 4 | cssval.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
| 5 | 4, 2 | iscss 21598 | . . 3 ⊢ (𝑊 ∈ dom ClSubSp → (𝑆 ∈ 𝐶 ↔ 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)))) |
| 6 | 3, 5 | syl 17 | . 2 ⊢ (𝑆 ∈ 𝐶 → (𝑆 ∈ 𝐶 ↔ 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)))) |
| 7 | 6 | ibi 267 | 1 ⊢ (𝑆 ∈ 𝐶 → 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 dom cdm 5640 ‘cfv 6513 ocvcocv 21575 ClSubSpccss 21576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fv 6521 df-ov 7392 df-ocv 21578 df-css 21579 |
| This theorem is referenced by: cssss 21600 cssincl 21603 csslss 21606 cssmre 21608 mrccss 21609 ocvpj 21632 csscld 25155 |
| Copyright terms: Public domain | W3C validator |