Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhillcs Structured version   Visualization version   GIF version

Theorem hlhillcs 41663
Description: The closed subspaces of the final constructed Hilbert space. TODO: hlhilbase 41637 is applied over and over to conclusion rather than applied once to antecedent - would compressed proof be shorter if applied once to antecedent? (Contributed by NM, 23-Jun-2015.)
Hypotheses
Ref Expression
hlhillcs.h 𝐻 = (LHyp‘𝐾)
hlhillcs.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
hlhillcs.u 𝑈 = ((HLHil‘𝐾)‘𝑊)
hlhillcs.c 𝐶 = (ClSubSp‘𝑈)
hlhillcs.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
hlhillcs (𝜑𝐶 = ran 𝐼)

Proof of Theorem hlhillcs
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hlhillcs.u . . . . . . 7 𝑈 = ((HLHil‘𝐾)‘𝑊)
21fvexi 6917 . . . . . 6 𝑈 ∈ V
3 eqid 2726 . . . . . . 7 (ocv‘𝑈) = (ocv‘𝑈)
4 hlhillcs.c . . . . . . 7 𝐶 = (ClSubSp‘𝑈)
53, 4iscss 21681 . . . . . 6 (𝑈 ∈ V → (𝑥𝐶𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥))))
62, 5mp1i 13 . . . . 5 (𝜑 → (𝑥𝐶𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥))))
76biimpa 475 . . . 4 ((𝜑𝑥𝐶) → 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)))
8 eqid 2726 . . . . . 6 (Base‘𝑈) = (Base‘𝑈)
98, 4cssss 21683 . . . . 5 (𝑥𝐶𝑥 ⊆ (Base‘𝑈))
10 hlhillcs.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
11 hlhillcs.i . . . . . . 7 𝐼 = ((DIsoH‘𝐾)‘𝑊)
12 eqid 2726 . . . . . . 7 ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊)
13 eqid 2726 . . . . . . 7 (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊))
14 eqid 2726 . . . . . . 7 ((ocH‘𝐾)‘𝑊) = ((ocH‘𝐾)‘𝑊)
15 hlhillcs.k . . . . . . . 8 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
1615adantr 479 . . . . . . 7 ((𝜑𝑥 ⊆ (Base‘𝑈)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
1710, 1, 15, 12, 13hlhilbase 41637 . . . . . . . . 9 (𝜑 → (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘𝑈))
1817sseq2d 4012 . . . . . . . 8 (𝜑 → (𝑥 ⊆ (Base‘((DVecH‘𝐾)‘𝑊)) ↔ 𝑥 ⊆ (Base‘𝑈)))
1918biimpar 476 . . . . . . 7 ((𝜑𝑥 ⊆ (Base‘𝑈)) → 𝑥 ⊆ (Base‘((DVecH‘𝐾)‘𝑊)))
2010, 11, 12, 13, 14, 16, 19dochoccl 41070 . . . . . 6 ((𝜑𝑥 ⊆ (Base‘𝑈)) → (𝑥 ∈ ran 𝐼 ↔ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥))
21 eqcom 2733 . . . . . . 7 (𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) ↔ ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = 𝑥)
2210, 12, 1, 16, 13, 14, 3, 19hlhilocv 41662 . . . . . . . . . 10 ((𝜑𝑥 ⊆ (Base‘𝑈)) → ((ocv‘𝑈)‘𝑥) = (((ocH‘𝐾)‘𝑊)‘𝑥))
2322fveq2d 6907 . . . . . . . . 9 ((𝜑𝑥 ⊆ (Base‘𝑈)) → ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = ((ocv‘𝑈)‘(((ocH‘𝐾)‘𝑊)‘𝑥)))
2410, 12, 13, 14dochssv 41056 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) → (((ocH‘𝐾)‘𝑊)‘𝑥) ⊆ (Base‘((DVecH‘𝐾)‘𝑊)))
2516, 19, 24syl2anc 582 . . . . . . . . . 10 ((𝜑𝑥 ⊆ (Base‘𝑈)) → (((ocH‘𝐾)‘𝑊)‘𝑥) ⊆ (Base‘((DVecH‘𝐾)‘𝑊)))
2610, 12, 1, 16, 13, 14, 3, 25hlhilocv 41662 . . . . . . . . 9 ((𝜑𝑥 ⊆ (Base‘𝑈)) → ((ocv‘𝑈)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)))
2723, 26eqtrd 2766 . . . . . . . 8 ((𝜑𝑥 ⊆ (Base‘𝑈)) → ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)))
2827eqeq1d 2728 . . . . . . 7 ((𝜑𝑥 ⊆ (Base‘𝑈)) → (((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = 𝑥 ↔ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥))
2921, 28bitrid 282 . . . . . 6 ((𝜑𝑥 ⊆ (Base‘𝑈)) → (𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) ↔ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥))
3020, 29bitr4d 281 . . . . 5 ((𝜑𝑥 ⊆ (Base‘𝑈)) → (𝑥 ∈ ran 𝐼𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥))))
319, 30sylan2 591 . . . 4 ((𝜑𝑥𝐶) → (𝑥 ∈ ran 𝐼𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥))))
327, 31mpbird 256 . . 3 ((𝜑𝑥𝐶) → 𝑥 ∈ ran 𝐼)
33 simpr 483 . . . 4 ((𝜑𝑥 ∈ ran 𝐼) → 𝑥 ∈ ran 𝐼)
3415adantr 479 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ran 𝐼) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3510, 12, 11, 13dihrnss 40979 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ran 𝐼) → 𝑥 ⊆ (Base‘((DVecH‘𝐾)‘𝑊)))
3615, 35sylan 578 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ran 𝐼) → 𝑥 ⊆ (Base‘((DVecH‘𝐾)‘𝑊)))
3710, 12, 1, 34, 13, 14, 3, 36hlhilocv 41662 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ran 𝐼) → ((ocv‘𝑈)‘𝑥) = (((ocH‘𝐾)‘𝑊)‘𝑥))
3837fveq2d 6907 . . . . . . . . . 10 ((𝜑𝑥 ∈ ran 𝐼) → ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = ((ocv‘𝑈)‘(((ocH‘𝐾)‘𝑊)‘𝑥)))
3934, 36, 24syl2anc 582 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ran 𝐼) → (((ocH‘𝐾)‘𝑊)‘𝑥) ⊆ (Base‘((DVecH‘𝐾)‘𝑊)))
4010, 12, 1, 34, 13, 14, 3, 39hlhilocv 41662 . . . . . . . . . 10 ((𝜑𝑥 ∈ ran 𝐼) → ((ocv‘𝑈)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)))
4138, 40eqtrd 2766 . . . . . . . . 9 ((𝜑𝑥 ∈ ran 𝐼) → ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)))
4241eqeq1d 2728 . . . . . . . 8 ((𝜑𝑥 ∈ ran 𝐼) → (((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = 𝑥 ↔ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥))
4342biimpar 476 . . . . . . 7 (((𝜑𝑥 ∈ ran 𝐼) ∧ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥) → ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = 𝑥)
4443eqcomd 2732 . . . . . 6 (((𝜑𝑥 ∈ ran 𝐼) ∧ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥) → 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)))
4544ex 411 . . . . 5 ((𝜑𝑥 ∈ ran 𝐼) → ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥))))
4610, 11, 12, 13, 14, 34, 36dochoccl 41070 . . . . 5 ((𝜑𝑥 ∈ ran 𝐼) → (𝑥 ∈ ran 𝐼 ↔ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥))
472, 5mp1i 13 . . . . 5 ((𝜑𝑥 ∈ ran 𝐼) → (𝑥𝐶𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥))))
4845, 46, 473imtr4d 293 . . . 4 ((𝜑𝑥 ∈ ran 𝐼) → (𝑥 ∈ ran 𝐼𝑥𝐶))
4933, 48mpd 15 . . 3 ((𝜑𝑥 ∈ ran 𝐼) → 𝑥𝐶)
5032, 49impbida 799 . 2 (𝜑 → (𝑥𝐶𝑥 ∈ ran 𝐼))
5150eqrdv 2724 1 (𝜑𝐶 = ran 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  Vcvv 3462  wss 3947  ran crn 5685  cfv 6556  Basecbs 17215  ocvcocv 21658  ClSubSpccss 21659  HLchlt 39050  LHypclh 39685  DVecHcdvh 40779  DIsoHcdih 40929  ocHcoch 41048  HLHilchlh 41633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5292  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237  ax-riotaBAD 38653
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-ot 4642  df-uni 4916  df-int 4957  df-iun 5005  df-iin 5006  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7692  df-om 7879  df-1st 8005  df-2nd 8006  df-tpos 8243  df-undef 8290  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-1o 8498  df-2o 8499  df-er 8736  df-map 8859  df-en 8977  df-dom 8978  df-sdom 8979  df-fin 8980  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-n0 12527  df-z 12613  df-uz 12877  df-fz 13541  df-struct 17151  df-sets 17168  df-slot 17186  df-ndx 17198  df-base 17216  df-ress 17245  df-plusg 17281  df-mulr 17282  df-starv 17283  df-sca 17284  df-vsca 17285  df-ip 17286  df-0g 17458  df-mre 17601  df-mrc 17602  df-acs 17604  df-proset 18322  df-poset 18340  df-plt 18357  df-lub 18373  df-glb 18374  df-join 18375  df-meet 18376  df-p0 18452  df-p1 18453  df-lat 18459  df-clat 18526  df-mgm 18635  df-sgrp 18714  df-mnd 18730  df-submnd 18776  df-grp 18933  df-minusg 18934  df-sbg 18935  df-subg 19119  df-cntz 19313  df-oppg 19342  df-lsm 19636  df-cmn 19782  df-abl 19783  df-mgp 20120  df-rng 20138  df-ur 20167  df-ring 20220  df-oppr 20318  df-dvdsr 20341  df-unit 20342  df-invr 20372  df-dvr 20385  df-nzr 20497  df-rlreg 20674  df-domn 20675  df-drng 20711  df-lmod 20840  df-lss 20911  df-lsp 20951  df-lvec 21083  df-ocv 21661  df-css 21662  df-lsatoms 38676  df-lshyp 38677  df-lcv 38719  df-lfl 38758  df-lkr 38786  df-ldual 38824  df-oposet 38876  df-ol 38878  df-oml 38879  df-covers 38966  df-ats 38967  df-atl 38998  df-cvlat 39022  df-hlat 39051  df-llines 39199  df-lplanes 39200  df-lvols 39201  df-lines 39202  df-psubsp 39204  df-pmap 39205  df-padd 39497  df-lhyp 39689  df-laut 39690  df-ldil 39805  df-ltrn 39806  df-trl 39860  df-tgrp 40444  df-tendo 40456  df-edring 40458  df-dveca 40704  df-disoa 40730  df-dvech 40780  df-dib 40840  df-dic 40874  df-dih 40930  df-doch 41049  df-djh 41096  df-lcdual 41288  df-mapd 41326  df-hvmap 41458  df-hdmap1 41494  df-hdmap 41495  df-hlhil 41634
This theorem is referenced by:  hlhilhillem  41665
  Copyright terms: Public domain W3C validator