| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhillcs | Structured version Visualization version GIF version | ||
| Description: The closed subspaces of the final constructed Hilbert space. TODO: hlhilbase 41937 is applied over and over to conclusion rather than applied once to antecedent - would compressed proof be shorter if applied once to antecedent? (Contributed by NM, 23-Jun-2015.) |
| Ref | Expression |
|---|---|
| hlhillcs.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hlhillcs.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| hlhillcs.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
| hlhillcs.c | ⊢ 𝐶 = (ClSubSp‘𝑈) |
| hlhillcs.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| Ref | Expression |
|---|---|
| hlhillcs | ⊢ (𝜑 → 𝐶 = ran 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlhillcs.u | . . . . . . 7 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
| 2 | 1 | fvexi 6875 | . . . . . 6 ⊢ 𝑈 ∈ V |
| 3 | eqid 2730 | . . . . . . 7 ⊢ (ocv‘𝑈) = (ocv‘𝑈) | |
| 4 | hlhillcs.c | . . . . . . 7 ⊢ 𝐶 = (ClSubSp‘𝑈) | |
| 5 | 3, 4 | iscss 21599 | . . . . . 6 ⊢ (𝑈 ∈ V → (𝑥 ∈ 𝐶 ↔ 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)))) |
| 6 | 2, 5 | mp1i 13 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↔ 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)))) |
| 7 | 6 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥))) |
| 8 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 9 | 8, 4 | cssss 21601 | . . . . 5 ⊢ (𝑥 ∈ 𝐶 → 𝑥 ⊆ (Base‘𝑈)) |
| 10 | hlhillcs.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 11 | hlhillcs.i | . . . . . . 7 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
| 12 | eqid 2730 | . . . . . . 7 ⊢ ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊) | |
| 13 | eqid 2730 | . . . . . . 7 ⊢ (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊)) | |
| 14 | eqid 2730 | . . . . . . 7 ⊢ ((ocH‘𝐾)‘𝑊) = ((ocH‘𝐾)‘𝑊) | |
| 15 | hlhillcs.k | . . . . . . . 8 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 16 | 15 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 17 | 10, 1, 15, 12, 13 | hlhilbase 41937 | . . . . . . . . 9 ⊢ (𝜑 → (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘𝑈)) |
| 18 | 17 | sseq2d 3982 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ⊆ (Base‘((DVecH‘𝐾)‘𝑊)) ↔ 𝑥 ⊆ (Base‘𝑈))) |
| 19 | 18 | biimpar 477 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → 𝑥 ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
| 20 | 10, 11, 12, 13, 14, 16, 19 | dochoccl 41370 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → (𝑥 ∈ ran 𝐼 ↔ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥)) |
| 21 | eqcom 2737 | . . . . . . 7 ⊢ (𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) ↔ ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = 𝑥) | |
| 22 | 10, 12, 1, 16, 13, 14, 3, 19 | hlhilocv 41958 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → ((ocv‘𝑈)‘𝑥) = (((ocH‘𝐾)‘𝑊)‘𝑥)) |
| 23 | 22 | fveq2d 6865 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = ((ocv‘𝑈)‘(((ocH‘𝐾)‘𝑊)‘𝑥))) |
| 24 | 10, 12, 13, 14 | dochssv 41356 | . . . . . . . . . . 11 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) → (((ocH‘𝐾)‘𝑊)‘𝑥) ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
| 25 | 16, 19, 24 | syl2anc 584 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → (((ocH‘𝐾)‘𝑊)‘𝑥) ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
| 26 | 10, 12, 1, 16, 13, 14, 3, 25 | hlhilocv 41958 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → ((ocv‘𝑈)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥))) |
| 27 | 23, 26 | eqtrd 2765 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥))) |
| 28 | 27 | eqeq1d 2732 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → (((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = 𝑥 ↔ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥)) |
| 29 | 21, 28 | bitrid 283 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → (𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) ↔ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥)) |
| 30 | 20, 29 | bitr4d 282 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → (𝑥 ∈ ran 𝐼 ↔ 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)))) |
| 31 | 9, 30 | sylan2 593 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑥 ∈ ran 𝐼 ↔ 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)))) |
| 32 | 7, 31 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ ran 𝐼) |
| 33 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → 𝑥 ∈ ran 𝐼) | |
| 34 | 15 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 35 | 10, 12, 11, 13 | dihrnss 41279 | . . . . . . . . . . . . 13 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ ran 𝐼) → 𝑥 ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
| 36 | 15, 35 | sylan 580 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → 𝑥 ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
| 37 | 10, 12, 1, 34, 13, 14, 3, 36 | hlhilocv 41958 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → ((ocv‘𝑈)‘𝑥) = (((ocH‘𝐾)‘𝑊)‘𝑥)) |
| 38 | 37 | fveq2d 6865 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = ((ocv‘𝑈)‘(((ocH‘𝐾)‘𝑊)‘𝑥))) |
| 39 | 34, 36, 24 | syl2anc 584 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → (((ocH‘𝐾)‘𝑊)‘𝑥) ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
| 40 | 10, 12, 1, 34, 13, 14, 3, 39 | hlhilocv 41958 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → ((ocv‘𝑈)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥))) |
| 41 | 38, 40 | eqtrd 2765 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥))) |
| 42 | 41 | eqeq1d 2732 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → (((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = 𝑥 ↔ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥)) |
| 43 | 42 | biimpar 477 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ran 𝐼) ∧ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥) → ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = 𝑥) |
| 44 | 43 | eqcomd 2736 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ ran 𝐼) ∧ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥) → 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥))) |
| 45 | 44 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥 → 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)))) |
| 46 | 10, 11, 12, 13, 14, 34, 36 | dochoccl 41370 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → (𝑥 ∈ ran 𝐼 ↔ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥)) |
| 47 | 2, 5 | mp1i 13 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → (𝑥 ∈ 𝐶 ↔ 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)))) |
| 48 | 45, 46, 47 | 3imtr4d 294 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → (𝑥 ∈ ran 𝐼 → 𝑥 ∈ 𝐶)) |
| 49 | 33, 48 | mpd 15 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → 𝑥 ∈ 𝐶) |
| 50 | 32, 49 | impbida 800 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↔ 𝑥 ∈ ran 𝐼)) |
| 51 | 50 | eqrdv 2728 | 1 ⊢ (𝜑 → 𝐶 = ran 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 ran crn 5642 ‘cfv 6514 Basecbs 17186 ocvcocv 21576 ClSubSpccss 21577 HLchlt 39350 LHypclh 39985 DVecHcdvh 41079 DIsoHcdih 41229 ocHcoch 41348 HLHilchlh 41933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-riotaBAD 38953 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-ot 4601 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-undef 8255 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-0g 17411 df-mre 17554 df-mrc 17555 df-acs 17557 df-proset 18262 df-poset 18281 df-plt 18296 df-lub 18312 df-glb 18313 df-join 18314 df-meet 18315 df-p0 18391 df-p1 18392 df-lat 18398 df-clat 18465 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-cntz 19256 df-oppg 19285 df-lsm 19573 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-nzr 20429 df-rlreg 20610 df-domn 20611 df-drng 20647 df-lmod 20775 df-lss 20845 df-lsp 20885 df-lvec 21017 df-ocv 21579 df-css 21580 df-lsatoms 38976 df-lshyp 38977 df-lcv 39019 df-lfl 39058 df-lkr 39086 df-ldual 39124 df-oposet 39176 df-ol 39178 df-oml 39179 df-covers 39266 df-ats 39267 df-atl 39298 df-cvlat 39322 df-hlat 39351 df-llines 39499 df-lplanes 39500 df-lvols 39501 df-lines 39502 df-psubsp 39504 df-pmap 39505 df-padd 39797 df-lhyp 39989 df-laut 39990 df-ldil 40105 df-ltrn 40106 df-trl 40160 df-tgrp 40744 df-tendo 40756 df-edring 40758 df-dveca 41004 df-disoa 41030 df-dvech 41080 df-dib 41140 df-dic 41174 df-dih 41230 df-doch 41349 df-djh 41396 df-lcdual 41588 df-mapd 41626 df-hvmap 41758 df-hdmap1 41794 df-hdmap 41795 df-hlhil 41934 |
| This theorem is referenced by: hlhilhillem 41961 |
| Copyright terms: Public domain | W3C validator |