![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhillcs | Structured version Visualization version GIF version |
Description: The closed subspaces of the final constructed Hilbert space. TODO: hlhilbase 41919 is applied over and over to conclusion rather than applied once to antecedent - would compressed proof be shorter if applied once to antecedent? (Contributed by NM, 23-Jun-2015.) |
Ref | Expression |
---|---|
hlhillcs.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hlhillcs.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
hlhillcs.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
hlhillcs.c | ⊢ 𝐶 = (ClSubSp‘𝑈) |
hlhillcs.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
Ref | Expression |
---|---|
hlhillcs | ⊢ (𝜑 → 𝐶 = ran 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlhillcs.u | . . . . . . 7 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
2 | 1 | fvexi 6921 | . . . . . 6 ⊢ 𝑈 ∈ V |
3 | eqid 2735 | . . . . . . 7 ⊢ (ocv‘𝑈) = (ocv‘𝑈) | |
4 | hlhillcs.c | . . . . . . 7 ⊢ 𝐶 = (ClSubSp‘𝑈) | |
5 | 3, 4 | iscss 21719 | . . . . . 6 ⊢ (𝑈 ∈ V → (𝑥 ∈ 𝐶 ↔ 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)))) |
6 | 2, 5 | mp1i 13 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↔ 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)))) |
7 | 6 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥))) |
8 | eqid 2735 | . . . . . 6 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
9 | 8, 4 | cssss 21721 | . . . . 5 ⊢ (𝑥 ∈ 𝐶 → 𝑥 ⊆ (Base‘𝑈)) |
10 | hlhillcs.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
11 | hlhillcs.i | . . . . . . 7 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
12 | eqid 2735 | . . . . . . 7 ⊢ ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊) | |
13 | eqid 2735 | . . . . . . 7 ⊢ (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊)) | |
14 | eqid 2735 | . . . . . . 7 ⊢ ((ocH‘𝐾)‘𝑊) = ((ocH‘𝐾)‘𝑊) | |
15 | hlhillcs.k | . . . . . . . 8 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
16 | 15 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
17 | 10, 1, 15, 12, 13 | hlhilbase 41919 | . . . . . . . . 9 ⊢ (𝜑 → (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘𝑈)) |
18 | 17 | sseq2d 4028 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ⊆ (Base‘((DVecH‘𝐾)‘𝑊)) ↔ 𝑥 ⊆ (Base‘𝑈))) |
19 | 18 | biimpar 477 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → 𝑥 ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
20 | 10, 11, 12, 13, 14, 16, 19 | dochoccl 41352 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → (𝑥 ∈ ran 𝐼 ↔ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥)) |
21 | eqcom 2742 | . . . . . . 7 ⊢ (𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) ↔ ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = 𝑥) | |
22 | 10, 12, 1, 16, 13, 14, 3, 19 | hlhilocv 41944 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → ((ocv‘𝑈)‘𝑥) = (((ocH‘𝐾)‘𝑊)‘𝑥)) |
23 | 22 | fveq2d 6911 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = ((ocv‘𝑈)‘(((ocH‘𝐾)‘𝑊)‘𝑥))) |
24 | 10, 12, 13, 14 | dochssv 41338 | . . . . . . . . . . 11 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) → (((ocH‘𝐾)‘𝑊)‘𝑥) ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
25 | 16, 19, 24 | syl2anc 584 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → (((ocH‘𝐾)‘𝑊)‘𝑥) ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
26 | 10, 12, 1, 16, 13, 14, 3, 25 | hlhilocv 41944 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → ((ocv‘𝑈)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥))) |
27 | 23, 26 | eqtrd 2775 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥))) |
28 | 27 | eqeq1d 2737 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → (((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = 𝑥 ↔ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥)) |
29 | 21, 28 | bitrid 283 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → (𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) ↔ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥)) |
30 | 20, 29 | bitr4d 282 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → (𝑥 ∈ ran 𝐼 ↔ 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)))) |
31 | 9, 30 | sylan2 593 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑥 ∈ ran 𝐼 ↔ 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)))) |
32 | 7, 31 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ ran 𝐼) |
33 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → 𝑥 ∈ ran 𝐼) | |
34 | 15 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
35 | 10, 12, 11, 13 | dihrnss 41261 | . . . . . . . . . . . . 13 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ ran 𝐼) → 𝑥 ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
36 | 15, 35 | sylan 580 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → 𝑥 ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
37 | 10, 12, 1, 34, 13, 14, 3, 36 | hlhilocv 41944 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → ((ocv‘𝑈)‘𝑥) = (((ocH‘𝐾)‘𝑊)‘𝑥)) |
38 | 37 | fveq2d 6911 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = ((ocv‘𝑈)‘(((ocH‘𝐾)‘𝑊)‘𝑥))) |
39 | 34, 36, 24 | syl2anc 584 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → (((ocH‘𝐾)‘𝑊)‘𝑥) ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
40 | 10, 12, 1, 34, 13, 14, 3, 39 | hlhilocv 41944 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → ((ocv‘𝑈)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥))) |
41 | 38, 40 | eqtrd 2775 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥))) |
42 | 41 | eqeq1d 2737 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → (((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = 𝑥 ↔ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥)) |
43 | 42 | biimpar 477 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ran 𝐼) ∧ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥) → ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = 𝑥) |
44 | 43 | eqcomd 2741 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ ran 𝐼) ∧ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥) → 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥))) |
45 | 44 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥 → 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)))) |
46 | 10, 11, 12, 13, 14, 34, 36 | dochoccl 41352 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → (𝑥 ∈ ran 𝐼 ↔ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥)) |
47 | 2, 5 | mp1i 13 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → (𝑥 ∈ 𝐶 ↔ 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)))) |
48 | 45, 46, 47 | 3imtr4d 294 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → (𝑥 ∈ ran 𝐼 → 𝑥 ∈ 𝐶)) |
49 | 33, 48 | mpd 15 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → 𝑥 ∈ 𝐶) |
50 | 32, 49 | impbida 801 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↔ 𝑥 ∈ ran 𝐼)) |
51 | 50 | eqrdv 2733 | 1 ⊢ (𝜑 → 𝐶 = ran 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ⊆ wss 3963 ran crn 5690 ‘cfv 6563 Basecbs 17245 ocvcocv 21696 ClSubSpccss 21697 HLchlt 39332 LHypclh 39967 DVecHcdvh 41061 DIsoHcdih 41211 ocHcoch 41330 HLHilchlh 41915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-riotaBAD 38935 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-ot 4640 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-tpos 8250 df-undef 8297 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-0g 17488 df-mre 17631 df-mrc 17632 df-acs 17634 df-proset 18352 df-poset 18371 df-plt 18388 df-lub 18404 df-glb 18405 df-join 18406 df-meet 18407 df-p0 18483 df-p1 18484 df-lat 18490 df-clat 18557 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-subg 19154 df-cntz 19348 df-oppg 19377 df-lsm 19669 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-invr 20405 df-dvr 20418 df-nzr 20530 df-rlreg 20711 df-domn 20712 df-drng 20748 df-lmod 20877 df-lss 20948 df-lsp 20988 df-lvec 21120 df-ocv 21699 df-css 21700 df-lsatoms 38958 df-lshyp 38959 df-lcv 39001 df-lfl 39040 df-lkr 39068 df-ldual 39106 df-oposet 39158 df-ol 39160 df-oml 39161 df-covers 39248 df-ats 39249 df-atl 39280 df-cvlat 39304 df-hlat 39333 df-llines 39481 df-lplanes 39482 df-lvols 39483 df-lines 39484 df-psubsp 39486 df-pmap 39487 df-padd 39779 df-lhyp 39971 df-laut 39972 df-ldil 40087 df-ltrn 40088 df-trl 40142 df-tgrp 40726 df-tendo 40738 df-edring 40740 df-dveca 40986 df-disoa 41012 df-dvech 41062 df-dib 41122 df-dic 41156 df-dih 41212 df-doch 41331 df-djh 41378 df-lcdual 41570 df-mapd 41608 df-hvmap 41740 df-hdmap1 41776 df-hdmap 41777 df-hlhil 41916 |
This theorem is referenced by: hlhilhillem 41947 |
Copyright terms: Public domain | W3C validator |