![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhillcs | Structured version Visualization version GIF version |
Description: The closed subspaces of the final constructed Hilbert space. TODO: hlhilbase 41893 is applied over and over to conclusion rather than applied once to antecedent - would compressed proof be shorter if applied once to antecedent? (Contributed by NM, 23-Jun-2015.) |
Ref | Expression |
---|---|
hlhillcs.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hlhillcs.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
hlhillcs.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
hlhillcs.c | ⊢ 𝐶 = (ClSubSp‘𝑈) |
hlhillcs.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
Ref | Expression |
---|---|
hlhillcs | ⊢ (𝜑 → 𝐶 = ran 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlhillcs.u | . . . . . . 7 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
2 | 1 | fvexi 6934 | . . . . . 6 ⊢ 𝑈 ∈ V |
3 | eqid 2740 | . . . . . . 7 ⊢ (ocv‘𝑈) = (ocv‘𝑈) | |
4 | hlhillcs.c | . . . . . . 7 ⊢ 𝐶 = (ClSubSp‘𝑈) | |
5 | 3, 4 | iscss 21724 | . . . . . 6 ⊢ (𝑈 ∈ V → (𝑥 ∈ 𝐶 ↔ 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)))) |
6 | 2, 5 | mp1i 13 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↔ 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)))) |
7 | 6 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥))) |
8 | eqid 2740 | . . . . . 6 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
9 | 8, 4 | cssss 21726 | . . . . 5 ⊢ (𝑥 ∈ 𝐶 → 𝑥 ⊆ (Base‘𝑈)) |
10 | hlhillcs.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
11 | hlhillcs.i | . . . . . . 7 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
12 | eqid 2740 | . . . . . . 7 ⊢ ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊) | |
13 | eqid 2740 | . . . . . . 7 ⊢ (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊)) | |
14 | eqid 2740 | . . . . . . 7 ⊢ ((ocH‘𝐾)‘𝑊) = ((ocH‘𝐾)‘𝑊) | |
15 | hlhillcs.k | . . . . . . . 8 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
16 | 15 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
17 | 10, 1, 15, 12, 13 | hlhilbase 41893 | . . . . . . . . 9 ⊢ (𝜑 → (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘𝑈)) |
18 | 17 | sseq2d 4041 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ⊆ (Base‘((DVecH‘𝐾)‘𝑊)) ↔ 𝑥 ⊆ (Base‘𝑈))) |
19 | 18 | biimpar 477 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → 𝑥 ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
20 | 10, 11, 12, 13, 14, 16, 19 | dochoccl 41326 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → (𝑥 ∈ ran 𝐼 ↔ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥)) |
21 | eqcom 2747 | . . . . . . 7 ⊢ (𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) ↔ ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = 𝑥) | |
22 | 10, 12, 1, 16, 13, 14, 3, 19 | hlhilocv 41918 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → ((ocv‘𝑈)‘𝑥) = (((ocH‘𝐾)‘𝑊)‘𝑥)) |
23 | 22 | fveq2d 6924 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = ((ocv‘𝑈)‘(((ocH‘𝐾)‘𝑊)‘𝑥))) |
24 | 10, 12, 13, 14 | dochssv 41312 | . . . . . . . . . . 11 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) → (((ocH‘𝐾)‘𝑊)‘𝑥) ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
25 | 16, 19, 24 | syl2anc 583 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → (((ocH‘𝐾)‘𝑊)‘𝑥) ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
26 | 10, 12, 1, 16, 13, 14, 3, 25 | hlhilocv 41918 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → ((ocv‘𝑈)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥))) |
27 | 23, 26 | eqtrd 2780 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥))) |
28 | 27 | eqeq1d 2742 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → (((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = 𝑥 ↔ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥)) |
29 | 21, 28 | bitrid 283 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → (𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) ↔ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥)) |
30 | 20, 29 | bitr4d 282 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → (𝑥 ∈ ran 𝐼 ↔ 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)))) |
31 | 9, 30 | sylan2 592 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑥 ∈ ran 𝐼 ↔ 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)))) |
32 | 7, 31 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ ran 𝐼) |
33 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → 𝑥 ∈ ran 𝐼) | |
34 | 15 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
35 | 10, 12, 11, 13 | dihrnss 41235 | . . . . . . . . . . . . 13 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ ran 𝐼) → 𝑥 ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
36 | 15, 35 | sylan 579 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → 𝑥 ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
37 | 10, 12, 1, 34, 13, 14, 3, 36 | hlhilocv 41918 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → ((ocv‘𝑈)‘𝑥) = (((ocH‘𝐾)‘𝑊)‘𝑥)) |
38 | 37 | fveq2d 6924 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = ((ocv‘𝑈)‘(((ocH‘𝐾)‘𝑊)‘𝑥))) |
39 | 34, 36, 24 | syl2anc 583 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → (((ocH‘𝐾)‘𝑊)‘𝑥) ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
40 | 10, 12, 1, 34, 13, 14, 3, 39 | hlhilocv 41918 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → ((ocv‘𝑈)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥))) |
41 | 38, 40 | eqtrd 2780 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥))) |
42 | 41 | eqeq1d 2742 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → (((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = 𝑥 ↔ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥)) |
43 | 42 | biimpar 477 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ran 𝐼) ∧ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥) → ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = 𝑥) |
44 | 43 | eqcomd 2746 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ ran 𝐼) ∧ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥) → 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥))) |
45 | 44 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥 → 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)))) |
46 | 10, 11, 12, 13, 14, 34, 36 | dochoccl 41326 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → (𝑥 ∈ ran 𝐼 ↔ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥)) |
47 | 2, 5 | mp1i 13 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → (𝑥 ∈ 𝐶 ↔ 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)))) |
48 | 45, 46, 47 | 3imtr4d 294 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → (𝑥 ∈ ran 𝐼 → 𝑥 ∈ 𝐶)) |
49 | 33, 48 | mpd 15 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → 𝑥 ∈ 𝐶) |
50 | 32, 49 | impbida 800 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↔ 𝑥 ∈ ran 𝐼)) |
51 | 50 | eqrdv 2738 | 1 ⊢ (𝜑 → 𝐶 = ran 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 ran crn 5701 ‘cfv 6573 Basecbs 17258 ocvcocv 21701 ClSubSpccss 21702 HLchlt 39306 LHypclh 39941 DVecHcdvh 41035 DIsoHcdih 41185 ocHcoch 41304 HLHilchlh 41889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-riotaBAD 38909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-ot 4657 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-undef 8314 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-0g 17501 df-mre 17644 df-mrc 17645 df-acs 17647 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-p1 18496 df-lat 18502 df-clat 18569 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cntz 19357 df-oppg 19386 df-lsm 19678 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-nzr 20539 df-rlreg 20716 df-domn 20717 df-drng 20753 df-lmod 20882 df-lss 20953 df-lsp 20993 df-lvec 21125 df-ocv 21704 df-css 21705 df-lsatoms 38932 df-lshyp 38933 df-lcv 38975 df-lfl 39014 df-lkr 39042 df-ldual 39080 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-llines 39455 df-lplanes 39456 df-lvols 39457 df-lines 39458 df-psubsp 39460 df-pmap 39461 df-padd 39753 df-lhyp 39945 df-laut 39946 df-ldil 40061 df-ltrn 40062 df-trl 40116 df-tgrp 40700 df-tendo 40712 df-edring 40714 df-dveca 40960 df-disoa 40986 df-dvech 41036 df-dib 41096 df-dic 41130 df-dih 41186 df-doch 41305 df-djh 41352 df-lcdual 41544 df-mapd 41582 df-hvmap 41714 df-hdmap1 41750 df-hdmap 41751 df-hlhil 41890 |
This theorem is referenced by: hlhilhillem 41921 |
Copyright terms: Public domain | W3C validator |