| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhillcs | Structured version Visualization version GIF version | ||
| Description: The closed subspaces of the final constructed Hilbert space. TODO: hlhilbase 41915 is applied over and over to conclusion rather than applied once to antecedent - would compressed proof be shorter if applied once to antecedent? (Contributed by NM, 23-Jun-2015.) |
| Ref | Expression |
|---|---|
| hlhillcs.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hlhillcs.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| hlhillcs.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
| hlhillcs.c | ⊢ 𝐶 = (ClSubSp‘𝑈) |
| hlhillcs.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| Ref | Expression |
|---|---|
| hlhillcs | ⊢ (𝜑 → 𝐶 = ran 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlhillcs.u | . . . . . . 7 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
| 2 | 1 | fvexi 6840 | . . . . . 6 ⊢ 𝑈 ∈ V |
| 3 | eqid 2729 | . . . . . . 7 ⊢ (ocv‘𝑈) = (ocv‘𝑈) | |
| 4 | hlhillcs.c | . . . . . . 7 ⊢ 𝐶 = (ClSubSp‘𝑈) | |
| 5 | 3, 4 | iscss 21608 | . . . . . 6 ⊢ (𝑈 ∈ V → (𝑥 ∈ 𝐶 ↔ 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)))) |
| 6 | 2, 5 | mp1i 13 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↔ 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)))) |
| 7 | 6 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥))) |
| 8 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 9 | 8, 4 | cssss 21610 | . . . . 5 ⊢ (𝑥 ∈ 𝐶 → 𝑥 ⊆ (Base‘𝑈)) |
| 10 | hlhillcs.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 11 | hlhillcs.i | . . . . . . 7 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
| 12 | eqid 2729 | . . . . . . 7 ⊢ ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊) | |
| 13 | eqid 2729 | . . . . . . 7 ⊢ (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊)) | |
| 14 | eqid 2729 | . . . . . . 7 ⊢ ((ocH‘𝐾)‘𝑊) = ((ocH‘𝐾)‘𝑊) | |
| 15 | hlhillcs.k | . . . . . . . 8 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 16 | 15 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 17 | 10, 1, 15, 12, 13 | hlhilbase 41915 | . . . . . . . . 9 ⊢ (𝜑 → (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘𝑈)) |
| 18 | 17 | sseq2d 3970 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ⊆ (Base‘((DVecH‘𝐾)‘𝑊)) ↔ 𝑥 ⊆ (Base‘𝑈))) |
| 19 | 18 | biimpar 477 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → 𝑥 ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
| 20 | 10, 11, 12, 13, 14, 16, 19 | dochoccl 41348 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → (𝑥 ∈ ran 𝐼 ↔ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥)) |
| 21 | eqcom 2736 | . . . . . . 7 ⊢ (𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) ↔ ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = 𝑥) | |
| 22 | 10, 12, 1, 16, 13, 14, 3, 19 | hlhilocv 41936 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → ((ocv‘𝑈)‘𝑥) = (((ocH‘𝐾)‘𝑊)‘𝑥)) |
| 23 | 22 | fveq2d 6830 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = ((ocv‘𝑈)‘(((ocH‘𝐾)‘𝑊)‘𝑥))) |
| 24 | 10, 12, 13, 14 | dochssv 41334 | . . . . . . . . . . 11 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) → (((ocH‘𝐾)‘𝑊)‘𝑥) ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
| 25 | 16, 19, 24 | syl2anc 584 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → (((ocH‘𝐾)‘𝑊)‘𝑥) ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
| 26 | 10, 12, 1, 16, 13, 14, 3, 25 | hlhilocv 41936 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → ((ocv‘𝑈)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥))) |
| 27 | 23, 26 | eqtrd 2764 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥))) |
| 28 | 27 | eqeq1d 2731 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → (((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = 𝑥 ↔ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥)) |
| 29 | 21, 28 | bitrid 283 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → (𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) ↔ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥)) |
| 30 | 20, 29 | bitr4d 282 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → (𝑥 ∈ ran 𝐼 ↔ 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)))) |
| 31 | 9, 30 | sylan2 593 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑥 ∈ ran 𝐼 ↔ 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)))) |
| 32 | 7, 31 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ ran 𝐼) |
| 33 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → 𝑥 ∈ ran 𝐼) | |
| 34 | 15 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 35 | 10, 12, 11, 13 | dihrnss 41257 | . . . . . . . . . . . . 13 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ ran 𝐼) → 𝑥 ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
| 36 | 15, 35 | sylan 580 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → 𝑥 ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
| 37 | 10, 12, 1, 34, 13, 14, 3, 36 | hlhilocv 41936 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → ((ocv‘𝑈)‘𝑥) = (((ocH‘𝐾)‘𝑊)‘𝑥)) |
| 38 | 37 | fveq2d 6830 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = ((ocv‘𝑈)‘(((ocH‘𝐾)‘𝑊)‘𝑥))) |
| 39 | 34, 36, 24 | syl2anc 584 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → (((ocH‘𝐾)‘𝑊)‘𝑥) ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
| 40 | 10, 12, 1, 34, 13, 14, 3, 39 | hlhilocv 41936 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → ((ocv‘𝑈)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥))) |
| 41 | 38, 40 | eqtrd 2764 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥))) |
| 42 | 41 | eqeq1d 2731 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → (((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = 𝑥 ↔ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥)) |
| 43 | 42 | biimpar 477 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ran 𝐼) ∧ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥) → ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = 𝑥) |
| 44 | 43 | eqcomd 2735 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ ran 𝐼) ∧ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥) → 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥))) |
| 45 | 44 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥 → 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)))) |
| 46 | 10, 11, 12, 13, 14, 34, 36 | dochoccl 41348 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → (𝑥 ∈ ran 𝐼 ↔ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥)) |
| 47 | 2, 5 | mp1i 13 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → (𝑥 ∈ 𝐶 ↔ 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)))) |
| 48 | 45, 46, 47 | 3imtr4d 294 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → (𝑥 ∈ ran 𝐼 → 𝑥 ∈ 𝐶)) |
| 49 | 33, 48 | mpd 15 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → 𝑥 ∈ 𝐶) |
| 50 | 32, 49 | impbida 800 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↔ 𝑥 ∈ ran 𝐼)) |
| 51 | 50 | eqrdv 2727 | 1 ⊢ (𝜑 → 𝐶 = ran 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 ran crn 5624 ‘cfv 6486 Basecbs 17138 ocvcocv 21585 ClSubSpccss 21586 HLchlt 39328 LHypclh 39963 DVecHcdvh 41057 DIsoHcdih 41207 ocHcoch 41326 HLHilchlh 41911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-riotaBAD 38931 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-ot 4588 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-undef 8213 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-0g 17363 df-mre 17506 df-mrc 17507 df-acs 17509 df-proset 18218 df-poset 18237 df-plt 18252 df-lub 18268 df-glb 18269 df-join 18270 df-meet 18271 df-p0 18347 df-p1 18348 df-lat 18356 df-clat 18423 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-subg 19020 df-cntz 19214 df-oppg 19243 df-lsm 19533 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-dvr 20304 df-nzr 20416 df-rlreg 20597 df-domn 20598 df-drng 20634 df-lmod 20783 df-lss 20853 df-lsp 20893 df-lvec 21025 df-ocv 21588 df-css 21589 df-lsatoms 38954 df-lshyp 38955 df-lcv 38997 df-lfl 39036 df-lkr 39064 df-ldual 39102 df-oposet 39154 df-ol 39156 df-oml 39157 df-covers 39244 df-ats 39245 df-atl 39276 df-cvlat 39300 df-hlat 39329 df-llines 39477 df-lplanes 39478 df-lvols 39479 df-lines 39480 df-psubsp 39482 df-pmap 39483 df-padd 39775 df-lhyp 39967 df-laut 39968 df-ldil 40083 df-ltrn 40084 df-trl 40138 df-tgrp 40722 df-tendo 40734 df-edring 40736 df-dveca 40982 df-disoa 41008 df-dvech 41058 df-dib 41118 df-dic 41152 df-dih 41208 df-doch 41327 df-djh 41374 df-lcdual 41566 df-mapd 41604 df-hvmap 41736 df-hdmap1 41772 df-hdmap 41773 df-hlhil 41912 |
| This theorem is referenced by: hlhilhillem 41939 |
| Copyright terms: Public domain | W3C validator |