| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhillcs | Structured version Visualization version GIF version | ||
| Description: The closed subspaces of the final constructed Hilbert space. TODO: hlhilbase 42045 is applied over and over to conclusion rather than applied once to antecedent - would compressed proof be shorter if applied once to antecedent? (Contributed by NM, 23-Jun-2015.) |
| Ref | Expression |
|---|---|
| hlhillcs.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hlhillcs.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| hlhillcs.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
| hlhillcs.c | ⊢ 𝐶 = (ClSubSp‘𝑈) |
| hlhillcs.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| Ref | Expression |
|---|---|
| hlhillcs | ⊢ (𝜑 → 𝐶 = ran 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlhillcs.u | . . . . . . 7 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
| 2 | 1 | fvexi 6845 | . . . . . 6 ⊢ 𝑈 ∈ V |
| 3 | eqid 2733 | . . . . . . 7 ⊢ (ocv‘𝑈) = (ocv‘𝑈) | |
| 4 | hlhillcs.c | . . . . . . 7 ⊢ 𝐶 = (ClSubSp‘𝑈) | |
| 5 | 3, 4 | iscss 21630 | . . . . . 6 ⊢ (𝑈 ∈ V → (𝑥 ∈ 𝐶 ↔ 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)))) |
| 6 | 2, 5 | mp1i 13 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↔ 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)))) |
| 7 | 6 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥))) |
| 8 | eqid 2733 | . . . . . 6 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 9 | 8, 4 | cssss 21632 | . . . . 5 ⊢ (𝑥 ∈ 𝐶 → 𝑥 ⊆ (Base‘𝑈)) |
| 10 | hlhillcs.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 11 | hlhillcs.i | . . . . . . 7 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
| 12 | eqid 2733 | . . . . . . 7 ⊢ ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊) | |
| 13 | eqid 2733 | . . . . . . 7 ⊢ (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊)) | |
| 14 | eqid 2733 | . . . . . . 7 ⊢ ((ocH‘𝐾)‘𝑊) = ((ocH‘𝐾)‘𝑊) | |
| 15 | hlhillcs.k | . . . . . . . 8 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 16 | 15 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 17 | 10, 1, 15, 12, 13 | hlhilbase 42045 | . . . . . . . . 9 ⊢ (𝜑 → (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘𝑈)) |
| 18 | 17 | sseq2d 3964 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ⊆ (Base‘((DVecH‘𝐾)‘𝑊)) ↔ 𝑥 ⊆ (Base‘𝑈))) |
| 19 | 18 | biimpar 477 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → 𝑥 ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
| 20 | 10, 11, 12, 13, 14, 16, 19 | dochoccl 41478 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → (𝑥 ∈ ran 𝐼 ↔ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥)) |
| 21 | eqcom 2740 | . . . . . . 7 ⊢ (𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) ↔ ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = 𝑥) | |
| 22 | 10, 12, 1, 16, 13, 14, 3, 19 | hlhilocv 42066 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → ((ocv‘𝑈)‘𝑥) = (((ocH‘𝐾)‘𝑊)‘𝑥)) |
| 23 | 22 | fveq2d 6835 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = ((ocv‘𝑈)‘(((ocH‘𝐾)‘𝑊)‘𝑥))) |
| 24 | 10, 12, 13, 14 | dochssv 41464 | . . . . . . . . . . 11 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) → (((ocH‘𝐾)‘𝑊)‘𝑥) ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
| 25 | 16, 19, 24 | syl2anc 584 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → (((ocH‘𝐾)‘𝑊)‘𝑥) ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
| 26 | 10, 12, 1, 16, 13, 14, 3, 25 | hlhilocv 42066 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → ((ocv‘𝑈)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥))) |
| 27 | 23, 26 | eqtrd 2768 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥))) |
| 28 | 27 | eqeq1d 2735 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → (((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = 𝑥 ↔ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥)) |
| 29 | 21, 28 | bitrid 283 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → (𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) ↔ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥)) |
| 30 | 20, 29 | bitr4d 282 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ⊆ (Base‘𝑈)) → (𝑥 ∈ ran 𝐼 ↔ 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)))) |
| 31 | 9, 30 | sylan2 593 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑥 ∈ ran 𝐼 ↔ 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)))) |
| 32 | 7, 31 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ ran 𝐼) |
| 33 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → 𝑥 ∈ ran 𝐼) | |
| 34 | 15 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 35 | 10, 12, 11, 13 | dihrnss 41387 | . . . . . . . . . . . . 13 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ ran 𝐼) → 𝑥 ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
| 36 | 15, 35 | sylan 580 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → 𝑥 ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
| 37 | 10, 12, 1, 34, 13, 14, 3, 36 | hlhilocv 42066 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → ((ocv‘𝑈)‘𝑥) = (((ocH‘𝐾)‘𝑊)‘𝑥)) |
| 38 | 37 | fveq2d 6835 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = ((ocv‘𝑈)‘(((ocH‘𝐾)‘𝑊)‘𝑥))) |
| 39 | 34, 36, 24 | syl2anc 584 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → (((ocH‘𝐾)‘𝑊)‘𝑥) ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
| 40 | 10, 12, 1, 34, 13, 14, 3, 39 | hlhilocv 42066 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → ((ocv‘𝑈)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥))) |
| 41 | 38, 40 | eqtrd 2768 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥))) |
| 42 | 41 | eqeq1d 2735 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → (((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = 𝑥 ↔ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥)) |
| 43 | 42 | biimpar 477 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ran 𝐼) ∧ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥) → ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)) = 𝑥) |
| 44 | 43 | eqcomd 2739 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ ran 𝐼) ∧ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥) → 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥))) |
| 45 | 44 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → ((((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥 → 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)))) |
| 46 | 10, 11, 12, 13, 14, 34, 36 | dochoccl 41478 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → (𝑥 ∈ ran 𝐼 ↔ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘𝑥)) = 𝑥)) |
| 47 | 2, 5 | mp1i 13 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → (𝑥 ∈ 𝐶 ↔ 𝑥 = ((ocv‘𝑈)‘((ocv‘𝑈)‘𝑥)))) |
| 48 | 45, 46, 47 | 3imtr4d 294 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → (𝑥 ∈ ran 𝐼 → 𝑥 ∈ 𝐶)) |
| 49 | 33, 48 | mpd 15 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐼) → 𝑥 ∈ 𝐶) |
| 50 | 32, 49 | impbida 800 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↔ 𝑥 ∈ ran 𝐼)) |
| 51 | 50 | eqrdv 2731 | 1 ⊢ (𝜑 → 𝐶 = ran 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3438 ⊆ wss 3899 ran crn 5622 ‘cfv 6489 Basecbs 17130 ocvcocv 21607 ClSubSpccss 21608 HLchlt 39459 LHypclh 40093 DVecHcdvh 41187 DIsoHcdih 41337 ocHcoch 41456 HLHilchlh 42041 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-riotaBAD 39062 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-tpos 8165 df-undef 8212 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-n0 12392 df-z 12479 df-uz 12743 df-fz 13418 df-struct 17068 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-mulr 17185 df-starv 17186 df-sca 17187 df-vsca 17188 df-ip 17189 df-0g 17355 df-mre 17498 df-mrc 17499 df-acs 17501 df-proset 18210 df-poset 18229 df-plt 18244 df-lub 18260 df-glb 18261 df-join 18262 df-meet 18263 df-p0 18339 df-p1 18340 df-lat 18348 df-clat 18415 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-submnd 18702 df-grp 18859 df-minusg 18860 df-sbg 18861 df-subg 19046 df-cntz 19239 df-oppg 19268 df-lsm 19558 df-cmn 19704 df-abl 19705 df-mgp 20069 df-rng 20081 df-ur 20110 df-ring 20163 df-oppr 20265 df-dvdsr 20285 df-unit 20286 df-invr 20316 df-dvr 20329 df-nzr 20438 df-rlreg 20619 df-domn 20620 df-drng 20656 df-lmod 20805 df-lss 20875 df-lsp 20915 df-lvec 21047 df-ocv 21610 df-css 21611 df-lsatoms 39085 df-lshyp 39086 df-lcv 39128 df-lfl 39167 df-lkr 39195 df-ldual 39233 df-oposet 39285 df-ol 39287 df-oml 39288 df-covers 39375 df-ats 39376 df-atl 39407 df-cvlat 39431 df-hlat 39460 df-llines 39607 df-lplanes 39608 df-lvols 39609 df-lines 39610 df-psubsp 39612 df-pmap 39613 df-padd 39905 df-lhyp 40097 df-laut 40098 df-ldil 40213 df-ltrn 40214 df-trl 40268 df-tgrp 40852 df-tendo 40864 df-edring 40866 df-dveca 41112 df-disoa 41138 df-dvech 41188 df-dib 41248 df-dic 41282 df-dih 41338 df-doch 41457 df-djh 41504 df-lcdual 41696 df-mapd 41734 df-hvmap 41866 df-hdmap1 41902 df-hdmap 41903 df-hlhil 42042 |
| This theorem is referenced by: hlhilhillem 42069 |
| Copyright terms: Public domain | W3C validator |