| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > curry2f | Structured version Visualization version GIF version | ||
| Description: Functionality of a curried function with a constant second argument. (Contributed by NM, 16-Dec-2008.) |
| Ref | Expression |
|---|---|
| curry2.1 | ⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) |
| Ref | Expression |
|---|---|
| curry2f | ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝐶 ∈ 𝐵) → 𝐺:𝐴⟶𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6691 | . . 3 ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐷 → 𝐹 Fn (𝐴 × 𝐵)) | |
| 2 | curry2.1 | . . . 4 ⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) | |
| 3 | 2 | curry2 8089 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))) |
| 4 | 1, 3 | sylan 580 | . 2 ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝐶 ∈ 𝐵) → 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))) |
| 5 | fovcdm 7562 | . . . 4 ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → (𝑥𝐹𝐶) ∈ 𝐷) | |
| 6 | 5 | 3com23 1126 | . . 3 ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → (𝑥𝐹𝐶) ∈ 𝐷) |
| 7 | 6 | 3expa 1118 | . 2 ⊢ (((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝐶 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑥𝐹𝐶) ∈ 𝐷) |
| 8 | 4, 7 | fmpt3d 7091 | 1 ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝐶 ∈ 𝐵) → 𝐺:𝐴⟶𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 {csn 4592 ↦ cmpt 5191 × cxp 5639 ◡ccnv 5640 ↾ cres 5643 ∘ ccom 5645 Fn wfn 6509 ⟶wf 6510 (class class class)co 7390 1st c1st 7969 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-1st 7971 df-2nd 7972 |
| This theorem is referenced by: curry2ima 32639 |
| Copyright terms: Public domain | W3C validator |