Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > curry2f | Structured version Visualization version GIF version |
Description: Functionality of a curried function with a constant second argument. (Contributed by NM, 16-Dec-2008.) |
Ref | Expression |
---|---|
curry2.1 | ⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) |
Ref | Expression |
---|---|
curry2f | ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝐶 ∈ 𝐵) → 𝐺:𝐴⟶𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6503 | . . 3 ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐷 → 𝐹 Fn (𝐴 × 𝐵)) | |
2 | curry2.1 | . . . 4 ⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) | |
3 | 2 | curry2 7813 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))) |
4 | 1, 3 | sylan 583 | . 2 ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝐶 ∈ 𝐵) → 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))) |
5 | fovrn 7320 | . . . 4 ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → (𝑥𝐹𝐶) ∈ 𝐷) | |
6 | 5 | 3com23 1123 | . . 3 ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → (𝑥𝐹𝐶) ∈ 𝐷) |
7 | 6 | 3expa 1115 | . 2 ⊢ (((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝐶 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑥𝐹𝐶) ∈ 𝐷) |
8 | 4, 7 | fmpt3d 6877 | 1 ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐷 ∧ 𝐶 ∈ 𝐵) → 𝐺:𝐴⟶𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 {csn 4525 ↦ cmpt 5116 × cxp 5526 ◡ccnv 5527 ↾ cres 5530 ∘ ccom 5532 Fn wfn 6335 ⟶wf 6336 (class class class)co 7156 1st c1st 7697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7159 df-1st 7699 df-2nd 7700 |
This theorem is referenced by: curry2ima 30578 |
Copyright terms: Public domain | W3C validator |