MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curry2f Structured version   Visualization version   GIF version

Theorem curry2f 8033
Description: Functionality of a curried function with a constant second argument. (Contributed by NM, 16-Dec-2008.)
Hypothesis
Ref Expression
curry2.1 𝐺 = (𝐹(1st ↾ (V × {𝐶})))
Assertion
Ref Expression
curry2f ((𝐹:(𝐴 × 𝐵)⟶𝐷𝐶𝐵) → 𝐺:𝐴𝐷)

Proof of Theorem curry2f
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ffn 6647 . . 3 (𝐹:(𝐴 × 𝐵)⟶𝐷𝐹 Fn (𝐴 × 𝐵))
2 curry2.1 . . . 4 𝐺 = (𝐹(1st ↾ (V × {𝐶})))
32curry2 8032 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → 𝐺 = (𝑥𝐴 ↦ (𝑥𝐹𝐶)))
41, 3sylan 580 . 2 ((𝐹:(𝐴 × 𝐵)⟶𝐷𝐶𝐵) → 𝐺 = (𝑥𝐴 ↦ (𝑥𝐹𝐶)))
5 fovcdm 7511 . . . 4 ((𝐹:(𝐴 × 𝐵)⟶𝐷𝑥𝐴𝐶𝐵) → (𝑥𝐹𝐶) ∈ 𝐷)
653com23 1126 . . 3 ((𝐹:(𝐴 × 𝐵)⟶𝐷𝐶𝐵𝑥𝐴) → (𝑥𝐹𝐶) ∈ 𝐷)
763expa 1118 . 2 (((𝐹:(𝐴 × 𝐵)⟶𝐷𝐶𝐵) ∧ 𝑥𝐴) → (𝑥𝐹𝐶) ∈ 𝐷)
84, 7fmpt3d 7044 1 ((𝐹:(𝐴 × 𝐵)⟶𝐷𝐶𝐵) → 𝐺:𝐴𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  Vcvv 3434  {csn 4574  cmpt 5170   × cxp 5612  ccnv 5613  cres 5616  ccom 5618   Fn wfn 6472  wf 6473  (class class class)co 7341  1st c1st 7914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-1st 7916  df-2nd 7917
This theorem is referenced by:  curry2ima  32680
  Copyright terms: Public domain W3C validator