MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curry2f Structured version   Visualization version   GIF version

Theorem curry2f 8149
Description: Functionality of a curried function with a constant second argument. (Contributed by NM, 16-Dec-2008.)
Hypothesis
Ref Expression
curry2.1 𝐺 = (𝐹(1st ↾ (V × {𝐶})))
Assertion
Ref Expression
curry2f ((𝐹:(𝐴 × 𝐵)⟶𝐷𝐶𝐵) → 𝐺:𝐴𝐷)

Proof of Theorem curry2f
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ffn 6747 . . 3 (𝐹:(𝐴 × 𝐵)⟶𝐷𝐹 Fn (𝐴 × 𝐵))
2 curry2.1 . . . 4 𝐺 = (𝐹(1st ↾ (V × {𝐶})))
32curry2 8148 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → 𝐺 = (𝑥𝐴 ↦ (𝑥𝐹𝐶)))
41, 3sylan 579 . 2 ((𝐹:(𝐴 × 𝐵)⟶𝐷𝐶𝐵) → 𝐺 = (𝑥𝐴 ↦ (𝑥𝐹𝐶)))
5 fovcdm 7620 . . . 4 ((𝐹:(𝐴 × 𝐵)⟶𝐷𝑥𝐴𝐶𝐵) → (𝑥𝐹𝐶) ∈ 𝐷)
653com23 1126 . . 3 ((𝐹:(𝐴 × 𝐵)⟶𝐷𝐶𝐵𝑥𝐴) → (𝑥𝐹𝐶) ∈ 𝐷)
763expa 1118 . 2 (((𝐹:(𝐴 × 𝐵)⟶𝐷𝐶𝐵) ∧ 𝑥𝐴) → (𝑥𝐹𝐶) ∈ 𝐷)
84, 7fmpt3d 7150 1 ((𝐹:(𝐴 × 𝐵)⟶𝐷𝐶𝐵) → 𝐺:𝐴𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  {csn 4648  cmpt 5249   × cxp 5698  ccnv 5699  cres 5702  ccom 5704   Fn wfn 6568  wf 6569  (class class class)co 7448  1st c1st 8028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-1st 8030  df-2nd 8031
This theorem is referenced by:  curry2ima  32720
  Copyright terms: Public domain W3C validator