MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgbas0 Structured version   Visualization version   GIF version

Theorem symgbas0 18519
Description: The base set of the symmetric group on the empty set is the singleton containing the empty set. (Contributed by AV, 27-Feb-2019.)
Assertion
Ref Expression
symgbas0 (Base‘(SymGrp‘∅)) = {∅}

Proof of Theorem symgbas0
StepHypRef Expression
1 eqid 2823 . . . 4 ∅ = ∅
2 f1o00 6651 . . . 4 (𝑓:∅–1-1-onto→∅ ↔ (𝑓 = ∅ ∧ ∅ = ∅))
31, 2mpbiran2 708 . . 3 (𝑓:∅–1-1-onto→∅ ↔ 𝑓 = ∅)
43abbii 2888 . 2 {𝑓𝑓:∅–1-1-onto→∅} = {𝑓𝑓 = ∅}
5 eqid 2823 . . 3 (SymGrp‘∅) = (SymGrp‘∅)
6 eqid 2823 . . 3 (Base‘(SymGrp‘∅)) = (Base‘(SymGrp‘∅))
75, 6symgbas 18501 . 2 (Base‘(SymGrp‘∅)) = {𝑓𝑓:∅–1-1-onto→∅}
8 df-sn 4570 . 2 {∅} = {𝑓𝑓 = ∅}
94, 7, 83eqtr4i 2856 1 (Base‘(SymGrp‘∅)) = {∅}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  {cab 2801  c0 4293  {csn 4569  1-1-ontowf1o 6356  cfv 6357  Basecbs 16485  SymGrpcsymg 18497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-tset 16586  df-efmnd 18036  df-symg 18498
This theorem is referenced by:  0symgefmndeq  18524  symgvalstruct  18527  mdet0pr  21203
  Copyright terms: Public domain W3C validator