| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > derang0 | Structured version Visualization version GIF version | ||
| Description: The derangement number of the empty set. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| Ref | Expression |
|---|---|
| derang.d | ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) |
| Ref | Expression |
|---|---|
| derang0 | ⊢ (𝐷‘∅) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0fi 8959 | . . 3 ⊢ ∅ ∈ Fin | |
| 2 | derang.d | . . . 4 ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) | |
| 3 | 2 | derangval 35203 | . . 3 ⊢ (∅ ∈ Fin → (𝐷‘∅) = (♯‘{𝑓 ∣ (𝑓:∅–1-1-onto→∅ ∧ ∀𝑦 ∈ ∅ (𝑓‘𝑦) ≠ 𝑦)})) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝐷‘∅) = (♯‘{𝑓 ∣ (𝑓:∅–1-1-onto→∅ ∧ ∀𝑦 ∈ ∅ (𝑓‘𝑦) ≠ 𝑦)}) |
| 5 | ral0 4458 | . . . . . . 7 ⊢ ∀𝑦 ∈ ∅ (𝑓‘𝑦) ≠ 𝑦 | |
| 6 | 5 | biantru 529 | . . . . . 6 ⊢ (𝑓:∅–1-1-onto→∅ ↔ (𝑓:∅–1-1-onto→∅ ∧ ∀𝑦 ∈ ∅ (𝑓‘𝑦) ≠ 𝑦)) |
| 7 | eqid 2731 | . . . . . . 7 ⊢ ∅ = ∅ | |
| 8 | f1o00 6793 | . . . . . . 7 ⊢ (𝑓:∅–1-1-onto→∅ ↔ (𝑓 = ∅ ∧ ∅ = ∅)) | |
| 9 | 7, 8 | mpbiran2 710 | . . . . . 6 ⊢ (𝑓:∅–1-1-onto→∅ ↔ 𝑓 = ∅) |
| 10 | 6, 9 | bitr3i 277 | . . . . 5 ⊢ ((𝑓:∅–1-1-onto→∅ ∧ ∀𝑦 ∈ ∅ (𝑓‘𝑦) ≠ 𝑦) ↔ 𝑓 = ∅) |
| 11 | 10 | abbii 2798 | . . . 4 ⊢ {𝑓 ∣ (𝑓:∅–1-1-onto→∅ ∧ ∀𝑦 ∈ ∅ (𝑓‘𝑦) ≠ 𝑦)} = {𝑓 ∣ 𝑓 = ∅} |
| 12 | df-sn 4572 | . . . 4 ⊢ {∅} = {𝑓 ∣ 𝑓 = ∅} | |
| 13 | 11, 12 | eqtr4i 2757 | . . 3 ⊢ {𝑓 ∣ (𝑓:∅–1-1-onto→∅ ∧ ∀𝑦 ∈ ∅ (𝑓‘𝑦) ≠ 𝑦)} = {∅} |
| 14 | 13 | fveq2i 6820 | . 2 ⊢ (♯‘{𝑓 ∣ (𝑓:∅–1-1-onto→∅ ∧ ∀𝑦 ∈ ∅ (𝑓‘𝑦) ≠ 𝑦)}) = (♯‘{∅}) |
| 15 | 0ex 5240 | . . 3 ⊢ ∅ ∈ V | |
| 16 | hashsng 14271 | . . 3 ⊢ (∅ ∈ V → (♯‘{∅}) = 1) | |
| 17 | 15, 16 | ax-mp 5 | . 2 ⊢ (♯‘{∅}) = 1 |
| 18 | 4, 14, 17 | 3eqtri 2758 | 1 ⊢ (𝐷‘∅) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 ≠ wne 2928 ∀wral 3047 Vcvv 3436 ∅c0 4278 {csn 4571 ↦ cmpt 5167 –1-1-onto→wf1o 6475 ‘cfv 6476 Fincfn 8864 1c1 11002 ♯chash 14232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-hash 14233 |
| This theorem is referenced by: subfac0 35213 |
| Copyright terms: Public domain | W3C validator |