![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > derang0 | Structured version Visualization version GIF version |
Description: The derangement number of the empty set. (Contributed by Mario Carneiro, 19-Jan-2015.) |
Ref | Expression |
---|---|
derang.d | ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) |
Ref | Expression |
---|---|
derang0 | ⊢ (𝐷‘∅) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0fin 8463 | . . 3 ⊢ ∅ ∈ Fin | |
2 | derang.d | . . . 4 ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) | |
3 | 2 | derangval 31691 | . . 3 ⊢ (∅ ∈ Fin → (𝐷‘∅) = (♯‘{𝑓 ∣ (𝑓:∅–1-1-onto→∅ ∧ ∀𝑦 ∈ ∅ (𝑓‘𝑦) ≠ 𝑦)})) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝐷‘∅) = (♯‘{𝑓 ∣ (𝑓:∅–1-1-onto→∅ ∧ ∀𝑦 ∈ ∅ (𝑓‘𝑦) ≠ 𝑦)}) |
5 | ral0 4300 | . . . . . . 7 ⊢ ∀𝑦 ∈ ∅ (𝑓‘𝑦) ≠ 𝑦 | |
6 | 5 | biantru 525 | . . . . . 6 ⊢ (𝑓:∅–1-1-onto→∅ ↔ (𝑓:∅–1-1-onto→∅ ∧ ∀𝑦 ∈ ∅ (𝑓‘𝑦) ≠ 𝑦)) |
7 | eqid 2825 | . . . . . . 7 ⊢ ∅ = ∅ | |
8 | f1o00 6416 | . . . . . . 7 ⊢ (𝑓:∅–1-1-onto→∅ ↔ (𝑓 = ∅ ∧ ∅ = ∅)) | |
9 | 7, 8 | mpbiran2 701 | . . . . . 6 ⊢ (𝑓:∅–1-1-onto→∅ ↔ 𝑓 = ∅) |
10 | 6, 9 | bitr3i 269 | . . . . 5 ⊢ ((𝑓:∅–1-1-onto→∅ ∧ ∀𝑦 ∈ ∅ (𝑓‘𝑦) ≠ 𝑦) ↔ 𝑓 = ∅) |
11 | 10 | abbii 2944 | . . . 4 ⊢ {𝑓 ∣ (𝑓:∅–1-1-onto→∅ ∧ ∀𝑦 ∈ ∅ (𝑓‘𝑦) ≠ 𝑦)} = {𝑓 ∣ 𝑓 = ∅} |
12 | df-sn 4400 | . . . 4 ⊢ {∅} = {𝑓 ∣ 𝑓 = ∅} | |
13 | 11, 12 | eqtr4i 2852 | . . 3 ⊢ {𝑓 ∣ (𝑓:∅–1-1-onto→∅ ∧ ∀𝑦 ∈ ∅ (𝑓‘𝑦) ≠ 𝑦)} = {∅} |
14 | 13 | fveq2i 6440 | . 2 ⊢ (♯‘{𝑓 ∣ (𝑓:∅–1-1-onto→∅ ∧ ∀𝑦 ∈ ∅ (𝑓‘𝑦) ≠ 𝑦)}) = (♯‘{∅}) |
15 | 0ex 5016 | . . 3 ⊢ ∅ ∈ V | |
16 | hashsng 13456 | . . 3 ⊢ (∅ ∈ V → (♯‘{∅}) = 1) | |
17 | 15, 16 | ax-mp 5 | . 2 ⊢ (♯‘{∅}) = 1 |
18 | 4, 14, 17 | 3eqtri 2853 | 1 ⊢ (𝐷‘∅) = 1 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 386 = wceq 1656 ∈ wcel 2164 {cab 2811 ≠ wne 2999 ∀wral 3117 Vcvv 3414 ∅c0 4146 {csn 4399 ↦ cmpt 4954 –1-1-onto→wf1o 6126 ‘cfv 6127 Fincfn 8228 1c1 10260 ♯chash 13417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-1st 7433 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-card 9085 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-nn 11358 df-n0 11626 df-z 11712 df-uz 11976 df-fz 12627 df-hash 13418 |
This theorem is referenced by: subfac0 31701 |
Copyright terms: Public domain | W3C validator |