| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > derang0 | Structured version Visualization version GIF version | ||
| Description: The derangement number of the empty set. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| Ref | Expression |
|---|---|
| derang.d | ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) |
| Ref | Expression |
|---|---|
| derang0 | ⊢ (𝐷‘∅) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0fi 9056 | . . 3 ⊢ ∅ ∈ Fin | |
| 2 | derang.d | . . . 4 ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) | |
| 3 | 2 | derangval 35189 | . . 3 ⊢ (∅ ∈ Fin → (𝐷‘∅) = (♯‘{𝑓 ∣ (𝑓:∅–1-1-onto→∅ ∧ ∀𝑦 ∈ ∅ (𝑓‘𝑦) ≠ 𝑦)})) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝐷‘∅) = (♯‘{𝑓 ∣ (𝑓:∅–1-1-onto→∅ ∧ ∀𝑦 ∈ ∅ (𝑓‘𝑦) ≠ 𝑦)}) |
| 5 | ral0 4488 | . . . . . . 7 ⊢ ∀𝑦 ∈ ∅ (𝑓‘𝑦) ≠ 𝑦 | |
| 6 | 5 | biantru 529 | . . . . . 6 ⊢ (𝑓:∅–1-1-onto→∅ ↔ (𝑓:∅–1-1-onto→∅ ∧ ∀𝑦 ∈ ∅ (𝑓‘𝑦) ≠ 𝑦)) |
| 7 | eqid 2735 | . . . . . . 7 ⊢ ∅ = ∅ | |
| 8 | f1o00 6853 | . . . . . . 7 ⊢ (𝑓:∅–1-1-onto→∅ ↔ (𝑓 = ∅ ∧ ∅ = ∅)) | |
| 9 | 7, 8 | mpbiran2 710 | . . . . . 6 ⊢ (𝑓:∅–1-1-onto→∅ ↔ 𝑓 = ∅) |
| 10 | 6, 9 | bitr3i 277 | . . . . 5 ⊢ ((𝑓:∅–1-1-onto→∅ ∧ ∀𝑦 ∈ ∅ (𝑓‘𝑦) ≠ 𝑦) ↔ 𝑓 = ∅) |
| 11 | 10 | abbii 2802 | . . . 4 ⊢ {𝑓 ∣ (𝑓:∅–1-1-onto→∅ ∧ ∀𝑦 ∈ ∅ (𝑓‘𝑦) ≠ 𝑦)} = {𝑓 ∣ 𝑓 = ∅} |
| 12 | df-sn 4602 | . . . 4 ⊢ {∅} = {𝑓 ∣ 𝑓 = ∅} | |
| 13 | 11, 12 | eqtr4i 2761 | . . 3 ⊢ {𝑓 ∣ (𝑓:∅–1-1-onto→∅ ∧ ∀𝑦 ∈ ∅ (𝑓‘𝑦) ≠ 𝑦)} = {∅} |
| 14 | 13 | fveq2i 6879 | . 2 ⊢ (♯‘{𝑓 ∣ (𝑓:∅–1-1-onto→∅ ∧ ∀𝑦 ∈ ∅ (𝑓‘𝑦) ≠ 𝑦)}) = (♯‘{∅}) |
| 15 | 0ex 5277 | . . 3 ⊢ ∅ ∈ V | |
| 16 | hashsng 14387 | . . 3 ⊢ (∅ ∈ V → (♯‘{∅}) = 1) | |
| 17 | 15, 16 | ax-mp 5 | . 2 ⊢ (♯‘{∅}) = 1 |
| 18 | 4, 14, 17 | 3eqtri 2762 | 1 ⊢ (𝐷‘∅) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2713 ≠ wne 2932 ∀wral 3051 Vcvv 3459 ∅c0 4308 {csn 4601 ↦ cmpt 5201 –1-1-onto→wf1o 6530 ‘cfv 6531 Fincfn 8959 1c1 11130 ♯chash 14348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-hash 14349 |
| This theorem is referenced by: subfac0 35199 |
| Copyright terms: Public domain | W3C validator |