MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoo0 Structured version   Visualization version   GIF version

Theorem nmoo0 30735
Description: The operator norm of the zero operator. (Contributed by NM, 27-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoo0.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmoo0.0 𝑍 = (𝑈 0op 𝑊)
Assertion
Ref Expression
nmoo0 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑁𝑍) = 0)

Proof of Theorem nmoo0
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . 5 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 eqid 2729 . . . . 5 (BaseSet‘𝑊) = (BaseSet‘𝑊)
3 nmoo0.0 . . . . 5 𝑍 = (𝑈 0op 𝑊)
41, 2, 30oo 30733 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:(BaseSet‘𝑈)⟶(BaseSet‘𝑊))
5 eqid 2729 . . . . 5 (normCV𝑈) = (normCV𝑈)
6 eqid 2729 . . . . 5 (normCV𝑊) = (normCV𝑊)
7 nmoo0.3 . . . . 5 𝑁 = (𝑈 normOpOLD 𝑊)
81, 2, 5, 6, 7nmooval 30707 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑍:(BaseSet‘𝑈)⟶(BaseSet‘𝑊)) → (𝑁𝑍) = sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧)))}, ℝ*, < ))
94, 8mpd3an3 1464 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑁𝑍) = sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧)))}, ℝ*, < ))
10 df-sn 4578 . . . . 5 {0} = {𝑥𝑥 = 0}
11 eqid 2729 . . . . . . . . . . 11 (0vec𝑈) = (0vec𝑈)
121, 11nvzcl 30578 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → (0vec𝑈) ∈ (BaseSet‘𝑈))
1311, 5nvz0 30612 . . . . . . . . . . 11 (𝑈 ∈ NrmCVec → ((normCV𝑈)‘(0vec𝑈)) = 0)
14 0le1 11643 . . . . . . . . . . 11 0 ≤ 1
1513, 14eqbrtrdi 5131 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → ((normCV𝑈)‘(0vec𝑈)) ≤ 1)
16 fveq2 6822 . . . . . . . . . . . 12 (𝑧 = (0vec𝑈) → ((normCV𝑈)‘𝑧) = ((normCV𝑈)‘(0vec𝑈)))
1716breq1d 5102 . . . . . . . . . . 11 (𝑧 = (0vec𝑈) → (((normCV𝑈)‘𝑧) ≤ 1 ↔ ((normCV𝑈)‘(0vec𝑈)) ≤ 1))
1817rspcev 3577 . . . . . . . . . 10 (((0vec𝑈) ∈ (BaseSet‘𝑈) ∧ ((normCV𝑈)‘(0vec𝑈)) ≤ 1) → ∃𝑧 ∈ (BaseSet‘𝑈)((normCV𝑈)‘𝑧) ≤ 1)
1912, 15, 18syl2anc 584 . . . . . . . . 9 (𝑈 ∈ NrmCVec → ∃𝑧 ∈ (BaseSet‘𝑈)((normCV𝑈)‘𝑧) ≤ 1)
2019biantrurd 532 . . . . . . . 8 (𝑈 ∈ NrmCVec → (𝑥 = 0 ↔ (∃𝑧 ∈ (BaseSet‘𝑈)((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = 0)))
2120adantr 480 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑥 = 0 ↔ (∃𝑧 ∈ (BaseSet‘𝑈)((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = 0)))
22 eqid 2729 . . . . . . . . . . . . . . 15 (0vec𝑊) = (0vec𝑊)
231, 22, 30oval 30732 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑍𝑧) = (0vec𝑊))
24233expa 1118 . . . . . . . . . . . . 13 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑍𝑧) = (0vec𝑊))
2524fveq2d 6826 . . . . . . . . . . . 12 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((normCV𝑊)‘(𝑍𝑧)) = ((normCV𝑊)‘(0vec𝑊)))
2622, 6nvz0 30612 . . . . . . . . . . . . 13 (𝑊 ∈ NrmCVec → ((normCV𝑊)‘(0vec𝑊)) = 0)
2726ad2antlr 727 . . . . . . . . . . . 12 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((normCV𝑊)‘(0vec𝑊)) = 0)
2825, 27eqtrd 2764 . . . . . . . . . . 11 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((normCV𝑊)‘(𝑍𝑧)) = 0)
2928eqeq2d 2740 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑥 = ((normCV𝑊)‘(𝑍𝑧)) ↔ 𝑥 = 0))
3029anbi2d 630 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧))) ↔ (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = 0)))
3130rexbidva 3151 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧))) ↔ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = 0)))
32 r19.41v 3159 . . . . . . . 8 (∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = 0) ↔ (∃𝑧 ∈ (BaseSet‘𝑈)((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = 0))
3331, 32bitr2di 288 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → ((∃𝑧 ∈ (BaseSet‘𝑈)((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = 0) ↔ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧)))))
3421, 33bitrd 279 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑥 = 0 ↔ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧)))))
3534abbidv 2795 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → {𝑥𝑥 = 0} = {𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧)))})
3610, 35eqtr2id 2777 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → {𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧)))} = {0})
3736supeq1d 9336 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧)))}, ℝ*, < ) = sup({0}, ℝ*, < ))
389, 37eqtrd 2764 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑁𝑍) = sup({0}, ℝ*, < ))
39 xrltso 13043 . . 3 < Or ℝ*
40 0xr 11162 . . 3 0 ∈ ℝ*
41 supsn 9363 . . 3 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
4239, 40, 41mp2an 692 . 2 sup({0}, ℝ*, < ) = 0
4338, 42eqtrdi 2780 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑁𝑍) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  {csn 4577   class class class wbr 5092   Or wor 5526  wf 6478  cfv 6482  (class class class)co 7349  supcsup 9330  0cc0 11009  1c1 11010  *cxr 11148   < clt 11149  cle 11150  NrmCVeccnv 30528  BaseSetcba 30530  0veccn0v 30532  normCVcnmcv 30534   normOpOLD cnmoo 30685   0op c0o 30687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-grpo 30437  df-gid 30438  df-ginv 30439  df-ablo 30489  df-vc 30503  df-nv 30536  df-va 30539  df-ba 30540  df-sm 30541  df-0v 30542  df-nmcv 30544  df-nmoo 30689  df-0o 30691
This theorem is referenced by:  0blo  30736  nmlno0lem  30737
  Copyright terms: Public domain W3C validator