MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoo0 Structured version   Visualization version   GIF version

Theorem nmoo0 28495
Description: The operator norm of the zero operator. (Contributed by NM, 27-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoo0.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmoo0.0 𝑍 = (𝑈 0op 𝑊)
Assertion
Ref Expression
nmoo0 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑁𝑍) = 0)

Proof of Theorem nmoo0
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2818 . . . . 5 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 eqid 2818 . . . . 5 (BaseSet‘𝑊) = (BaseSet‘𝑊)
3 nmoo0.0 . . . . 5 𝑍 = (𝑈 0op 𝑊)
41, 2, 30oo 28493 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:(BaseSet‘𝑈)⟶(BaseSet‘𝑊))
5 eqid 2818 . . . . 5 (normCV𝑈) = (normCV𝑈)
6 eqid 2818 . . . . 5 (normCV𝑊) = (normCV𝑊)
7 nmoo0.3 . . . . 5 𝑁 = (𝑈 normOpOLD 𝑊)
81, 2, 5, 6, 7nmooval 28467 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑍:(BaseSet‘𝑈)⟶(BaseSet‘𝑊)) → (𝑁𝑍) = sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧)))}, ℝ*, < ))
94, 8mpd3an3 1453 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑁𝑍) = sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧)))}, ℝ*, < ))
10 df-sn 4558 . . . . 5 {0} = {𝑥𝑥 = 0}
11 eqid 2818 . . . . . . . . . . 11 (0vec𝑈) = (0vec𝑈)
121, 11nvzcl 28338 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → (0vec𝑈) ∈ (BaseSet‘𝑈))
1311, 5nvz0 28372 . . . . . . . . . . 11 (𝑈 ∈ NrmCVec → ((normCV𝑈)‘(0vec𝑈)) = 0)
14 0le1 11151 . . . . . . . . . . 11 0 ≤ 1
1513, 14eqbrtrdi 5096 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → ((normCV𝑈)‘(0vec𝑈)) ≤ 1)
16 fveq2 6663 . . . . . . . . . . . 12 (𝑧 = (0vec𝑈) → ((normCV𝑈)‘𝑧) = ((normCV𝑈)‘(0vec𝑈)))
1716breq1d 5067 . . . . . . . . . . 11 (𝑧 = (0vec𝑈) → (((normCV𝑈)‘𝑧) ≤ 1 ↔ ((normCV𝑈)‘(0vec𝑈)) ≤ 1))
1817rspcev 3620 . . . . . . . . . 10 (((0vec𝑈) ∈ (BaseSet‘𝑈) ∧ ((normCV𝑈)‘(0vec𝑈)) ≤ 1) → ∃𝑧 ∈ (BaseSet‘𝑈)((normCV𝑈)‘𝑧) ≤ 1)
1912, 15, 18syl2anc 584 . . . . . . . . 9 (𝑈 ∈ NrmCVec → ∃𝑧 ∈ (BaseSet‘𝑈)((normCV𝑈)‘𝑧) ≤ 1)
2019biantrurd 533 . . . . . . . 8 (𝑈 ∈ NrmCVec → (𝑥 = 0 ↔ (∃𝑧 ∈ (BaseSet‘𝑈)((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = 0)))
2120adantr 481 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑥 = 0 ↔ (∃𝑧 ∈ (BaseSet‘𝑈)((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = 0)))
22 eqid 2818 . . . . . . . . . . . . . . 15 (0vec𝑊) = (0vec𝑊)
231, 22, 30oval 28492 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑍𝑧) = (0vec𝑊))
24233expa 1110 . . . . . . . . . . . . 13 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑍𝑧) = (0vec𝑊))
2524fveq2d 6667 . . . . . . . . . . . 12 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((normCV𝑊)‘(𝑍𝑧)) = ((normCV𝑊)‘(0vec𝑊)))
2622, 6nvz0 28372 . . . . . . . . . . . . 13 (𝑊 ∈ NrmCVec → ((normCV𝑊)‘(0vec𝑊)) = 0)
2726ad2antlr 723 . . . . . . . . . . . 12 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((normCV𝑊)‘(0vec𝑊)) = 0)
2825, 27eqtrd 2853 . . . . . . . . . . 11 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((normCV𝑊)‘(𝑍𝑧)) = 0)
2928eqeq2d 2829 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑥 = ((normCV𝑊)‘(𝑍𝑧)) ↔ 𝑥 = 0))
3029anbi2d 628 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧))) ↔ (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = 0)))
3130rexbidva 3293 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧))) ↔ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = 0)))
32 r19.41v 3344 . . . . . . . 8 (∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = 0) ↔ (∃𝑧 ∈ (BaseSet‘𝑈)((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = 0))
3331, 32syl6rbb 289 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → ((∃𝑧 ∈ (BaseSet‘𝑈)((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = 0) ↔ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧)))))
3421, 33bitrd 280 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑥 = 0 ↔ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧)))))
3534abbidv 2882 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → {𝑥𝑥 = 0} = {𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧)))})
3610, 35syl5req 2866 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → {𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧)))} = {0})
3736supeq1d 8898 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧)))}, ℝ*, < ) = sup({0}, ℝ*, < ))
389, 37eqtrd 2853 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑁𝑍) = sup({0}, ℝ*, < ))
39 xrltso 12522 . . 3 < Or ℝ*
40 0xr 10676 . . 3 0 ∈ ℝ*
41 supsn 8924 . . 3 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
4239, 40, 41mp2an 688 . 2 sup({0}, ℝ*, < ) = 0
4338, 42syl6eq 2869 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑁𝑍) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  {cab 2796  wrex 3136  {csn 4557   class class class wbr 5057   Or wor 5466  wf 6344  cfv 6348  (class class class)co 7145  supcsup 8892  0cc0 10525  1c1 10526  *cxr 10662   < clt 10663  cle 10664  NrmCVeccnv 28288  BaseSetcba 28290  0veccn0v 28292  normCVcnmcv 28294   normOpOLD cnmoo 28445   0op c0o 28447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-grpo 28197  df-gid 28198  df-ginv 28199  df-ablo 28249  df-vc 28263  df-nv 28296  df-va 28299  df-ba 28300  df-sm 28301  df-0v 28302  df-nmcv 28304  df-nmoo 28449  df-0o 28451
This theorem is referenced by:  0blo  28496  nmlno0lem  28497
  Copyright terms: Public domain W3C validator