MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoo0 Structured version   Visualization version   GIF version

Theorem nmoo0 30819
Description: The operator norm of the zero operator. (Contributed by NM, 27-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoo0.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmoo0.0 𝑍 = (𝑈 0op 𝑊)
Assertion
Ref Expression
nmoo0 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑁𝑍) = 0)

Proof of Theorem nmoo0
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . . . 5 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 eqid 2734 . . . . 5 (BaseSet‘𝑊) = (BaseSet‘𝑊)
3 nmoo0.0 . . . . 5 𝑍 = (𝑈 0op 𝑊)
41, 2, 30oo 30817 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:(BaseSet‘𝑈)⟶(BaseSet‘𝑊))
5 eqid 2734 . . . . 5 (normCV𝑈) = (normCV𝑈)
6 eqid 2734 . . . . 5 (normCV𝑊) = (normCV𝑊)
7 nmoo0.3 . . . . 5 𝑁 = (𝑈 normOpOLD 𝑊)
81, 2, 5, 6, 7nmooval 30791 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑍:(BaseSet‘𝑈)⟶(BaseSet‘𝑊)) → (𝑁𝑍) = sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧)))}, ℝ*, < ))
94, 8mpd3an3 1461 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑁𝑍) = sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧)))}, ℝ*, < ))
10 df-sn 4631 . . . . 5 {0} = {𝑥𝑥 = 0}
11 eqid 2734 . . . . . . . . . . 11 (0vec𝑈) = (0vec𝑈)
121, 11nvzcl 30662 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → (0vec𝑈) ∈ (BaseSet‘𝑈))
1311, 5nvz0 30696 . . . . . . . . . . 11 (𝑈 ∈ NrmCVec → ((normCV𝑈)‘(0vec𝑈)) = 0)
14 0le1 11783 . . . . . . . . . . 11 0 ≤ 1
1513, 14eqbrtrdi 5186 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → ((normCV𝑈)‘(0vec𝑈)) ≤ 1)
16 fveq2 6906 . . . . . . . . . . . 12 (𝑧 = (0vec𝑈) → ((normCV𝑈)‘𝑧) = ((normCV𝑈)‘(0vec𝑈)))
1716breq1d 5157 . . . . . . . . . . 11 (𝑧 = (0vec𝑈) → (((normCV𝑈)‘𝑧) ≤ 1 ↔ ((normCV𝑈)‘(0vec𝑈)) ≤ 1))
1817rspcev 3621 . . . . . . . . . 10 (((0vec𝑈) ∈ (BaseSet‘𝑈) ∧ ((normCV𝑈)‘(0vec𝑈)) ≤ 1) → ∃𝑧 ∈ (BaseSet‘𝑈)((normCV𝑈)‘𝑧) ≤ 1)
1912, 15, 18syl2anc 584 . . . . . . . . 9 (𝑈 ∈ NrmCVec → ∃𝑧 ∈ (BaseSet‘𝑈)((normCV𝑈)‘𝑧) ≤ 1)
2019biantrurd 532 . . . . . . . 8 (𝑈 ∈ NrmCVec → (𝑥 = 0 ↔ (∃𝑧 ∈ (BaseSet‘𝑈)((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = 0)))
2120adantr 480 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑥 = 0 ↔ (∃𝑧 ∈ (BaseSet‘𝑈)((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = 0)))
22 eqid 2734 . . . . . . . . . . . . . . 15 (0vec𝑊) = (0vec𝑊)
231, 22, 30oval 30816 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑍𝑧) = (0vec𝑊))
24233expa 1117 . . . . . . . . . . . . 13 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑍𝑧) = (0vec𝑊))
2524fveq2d 6910 . . . . . . . . . . . 12 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((normCV𝑊)‘(𝑍𝑧)) = ((normCV𝑊)‘(0vec𝑊)))
2622, 6nvz0 30696 . . . . . . . . . . . . 13 (𝑊 ∈ NrmCVec → ((normCV𝑊)‘(0vec𝑊)) = 0)
2726ad2antlr 727 . . . . . . . . . . . 12 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((normCV𝑊)‘(0vec𝑊)) = 0)
2825, 27eqtrd 2774 . . . . . . . . . . 11 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((normCV𝑊)‘(𝑍𝑧)) = 0)
2928eqeq2d 2745 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑥 = ((normCV𝑊)‘(𝑍𝑧)) ↔ 𝑥 = 0))
3029anbi2d 630 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧))) ↔ (((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = 0)))
3130rexbidva 3174 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧))) ↔ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = 0)))
32 r19.41v 3186 . . . . . . . 8 (∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = 0) ↔ (∃𝑧 ∈ (BaseSet‘𝑈)((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = 0))
3331, 32bitr2di 288 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → ((∃𝑧 ∈ (BaseSet‘𝑈)((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = 0) ↔ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧)))))
3421, 33bitrd 279 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑥 = 0 ↔ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧)))))
3534abbidv 2805 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → {𝑥𝑥 = 0} = {𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧)))})
3610, 35eqtr2id 2787 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → {𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧)))} = {0})
3736supeq1d 9483 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑈)(((normCV𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑊)‘(𝑍𝑧)))}, ℝ*, < ) = sup({0}, ℝ*, < ))
389, 37eqtrd 2774 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑁𝑍) = sup({0}, ℝ*, < ))
39 xrltso 13179 . . 3 < Or ℝ*
40 0xr 11305 . . 3 0 ∈ ℝ*
41 supsn 9509 . . 3 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
4239, 40, 41mp2an 692 . 2 sup({0}, ℝ*, < ) = 0
4338, 42eqtrdi 2790 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑁𝑍) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  {cab 2711  wrex 3067  {csn 4630   class class class wbr 5147   Or wor 5595  wf 6558  cfv 6562  (class class class)co 7430  supcsup 9477  0cc0 11152  1c1 11153  *cxr 11291   < clt 11292  cle 11293  NrmCVeccnv 30612  BaseSetcba 30614  0veccn0v 30616  normCVcnmcv 30618   normOpOLD cnmoo 30769   0op c0o 30771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-grpo 30521  df-gid 30522  df-ginv 30523  df-ablo 30573  df-vc 30587  df-nv 30620  df-va 30623  df-ba 30624  df-sm 30625  df-0v 30626  df-nmcv 30628  df-nmoo 30773  df-0o 30775
This theorem is referenced by:  0blo  30820  nmlno0lem  30821
  Copyright terms: Public domain W3C validator