| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfac1 | Structured version Visualization version GIF version | ||
| Description: Equivalence of two versions of the Axiom of Choice ax-ac 10388. The proof uses the Axiom of Regularity. The right-hand side expresses our AC with the fewest number of different variables. (Contributed by Mario Carneiro, 17-May-2015.) |
| Ref | Expression |
|---|---|
| dfac1 | ⊢ (CHOICE ↔ ∀𝑥∃𝑦∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑥∀𝑧(∃𝑥((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) ∧ (𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)) ↔ 𝑧 = 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac7 10062 | . 2 ⊢ (CHOICE ↔ ∀𝑥∃𝑦∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) | |
| 2 | aceq1 10046 | . . 3 ⊢ (∃𝑦∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) ↔ ∃𝑦∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑥∀𝑧(∃𝑥((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) ∧ (𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)) ↔ 𝑧 = 𝑥))) | |
| 3 | 2 | albii 1819 | . 2 ⊢ (∀𝑥∃𝑦∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) ↔ ∀𝑥∃𝑦∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑥∀𝑧(∃𝑥((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) ∧ (𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)) ↔ 𝑧 = 𝑥))) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (CHOICE ↔ ∀𝑥∃𝑦∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑥∀𝑧(∃𝑥((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) ∧ (𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)) ↔ 𝑧 = 𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∀wral 3044 ∃wrex 3053 ∃!wreu 3349 CHOICEwac 10044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-reg 9521 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-eprel 5531 df-fr 5584 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-riota 7326 df-ac 10045 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |