MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac1 Structured version   Visualization version   GIF version

Theorem dfac1 10029
Description: Equivalence of two versions of the Axiom of Choice ax-ac 10353. The proof uses the Axiom of Regularity. The right-hand side expresses our AC with the fewest number of different variables. (Contributed by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
dfac1 (CHOICE ↔ ∀𝑥𝑦𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑥𝑧(∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦)) ↔ 𝑧 = 𝑥)))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤

Proof of Theorem dfac1
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac7 10027 . 2 (CHOICE ↔ ∀𝑥𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢))
2 aceq1 10011 . . 3 (∃𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∃𝑦𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑥𝑧(∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦)) ↔ 𝑧 = 𝑥)))
32albii 1819 . 2 (∀𝑥𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∀𝑥𝑦𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑥𝑧(∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦)) ↔ 𝑧 = 𝑥)))
41, 3bitri 275 1 (CHOICE ↔ ∀𝑥𝑦𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑥𝑧(∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦)) ↔ 𝑧 = 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wex 1779  wral 3044  wrex 3053  ∃!wreu 3341  CHOICEwac 10009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-reg 9484
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-eprel 5519  df-fr 5572  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-riota 7306  df-ac 10010
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator