MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onoviun Structured version   Visualization version   GIF version

Theorem onoviun 8273
Description: A variant of onovuni 8272 with indexed unions. (Contributed by Eric Schmidt, 26-May-2009.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Hypotheses
Ref Expression
onovuni.1 (Lim 𝑦 → (𝐴𝐹𝑦) = 𝑥𝑦 (𝐴𝐹𝑥))
onovuni.2 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → (𝐴𝐹𝑥) ⊆ (𝐴𝐹𝑦))
Assertion
Ref Expression
onoviun ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝐴𝐹 𝑧𝐾 𝐿) = 𝑧𝐾 (𝐴𝐹𝐿))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐹,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧   𝑥,𝐿,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑧)   𝐿(𝑧)

Proof of Theorem onoviun
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dfiun3g 5913 . . . 4 (∀𝑧𝐾 𝐿 ∈ On → 𝑧𝐾 𝐿 = ran (𝑧𝐾𝐿))
213ad2ant2 1134 . . 3 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → 𝑧𝐾 𝐿 = ran (𝑧𝐾𝐿))
32oveq2d 7369 . 2 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝐴𝐹 𝑧𝐾 𝐿) = (𝐴𝐹 ran (𝑧𝐾𝐿)))
4 simp1 1136 . . . 4 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → 𝐾𝑇)
5 mptexg 7161 . . . 4 (𝐾𝑇 → (𝑧𝐾𝐿) ∈ V)
6 rnexg 7842 . . . 4 ((𝑧𝐾𝐿) ∈ V → ran (𝑧𝐾𝐿) ∈ V)
74, 5, 63syl 18 . . 3 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → ran (𝑧𝐾𝐿) ∈ V)
8 simp2 1137 . . . . 5 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → ∀𝑧𝐾 𝐿 ∈ On)
9 eqid 2729 . . . . . 6 (𝑧𝐾𝐿) = (𝑧𝐾𝐿)
109fmpt 7048 . . . . 5 (∀𝑧𝐾 𝐿 ∈ On ↔ (𝑧𝐾𝐿):𝐾⟶On)
118, 10sylib 218 . . . 4 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝑧𝐾𝐿):𝐾⟶On)
1211frnd 6664 . . 3 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → ran (𝑧𝐾𝐿) ⊆ On)
13 dmmptg 6195 . . . . . 6 (∀𝑧𝐾 𝐿 ∈ On → dom (𝑧𝐾𝐿) = 𝐾)
14133ad2ant2 1134 . . . . 5 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → dom (𝑧𝐾𝐿) = 𝐾)
15 simp3 1138 . . . . 5 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → 𝐾 ≠ ∅)
1614, 15eqnetrd 2992 . . . 4 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → dom (𝑧𝐾𝐿) ≠ ∅)
17 dm0rn0 5871 . . . . 5 (dom (𝑧𝐾𝐿) = ∅ ↔ ran (𝑧𝐾𝐿) = ∅)
1817necon3bii 2977 . . . 4 (dom (𝑧𝐾𝐿) ≠ ∅ ↔ ran (𝑧𝐾𝐿) ≠ ∅)
1916, 18sylib 218 . . 3 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → ran (𝑧𝐾𝐿) ≠ ∅)
20 onovuni.1 . . . 4 (Lim 𝑦 → (𝐴𝐹𝑦) = 𝑥𝑦 (𝐴𝐹𝑥))
21 onovuni.2 . . . 4 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → (𝐴𝐹𝑥) ⊆ (𝐴𝐹𝑦))
2220, 21onovuni 8272 . . 3 ((ran (𝑧𝐾𝐿) ∈ V ∧ ran (𝑧𝐾𝐿) ⊆ On ∧ ran (𝑧𝐾𝐿) ≠ ∅) → (𝐴𝐹 ran (𝑧𝐾𝐿)) = 𝑥 ∈ ran (𝑧𝐾𝐿)(𝐴𝐹𝑥))
237, 12, 19, 22syl3anc 1373 . 2 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝐴𝐹 ran (𝑧𝐾𝐿)) = 𝑥 ∈ ran (𝑧𝐾𝐿)(𝐴𝐹𝑥))
24 oveq2 7361 . . . . . . 7 (𝑥 = 𝐿 → (𝐴𝐹𝑥) = (𝐴𝐹𝐿))
2524eleq2d 2814 . . . . . 6 (𝑥 = 𝐿 → (𝑤 ∈ (𝐴𝐹𝑥) ↔ 𝑤 ∈ (𝐴𝐹𝐿)))
269, 25rexrnmptw 7033 . . . . 5 (∀𝑧𝐾 𝐿 ∈ On → (∃𝑥 ∈ ran (𝑧𝐾𝐿)𝑤 ∈ (𝐴𝐹𝑥) ↔ ∃𝑧𝐾 𝑤 ∈ (𝐴𝐹𝐿)))
27263ad2ant2 1134 . . . 4 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (∃𝑥 ∈ ran (𝑧𝐾𝐿)𝑤 ∈ (𝐴𝐹𝑥) ↔ ∃𝑧𝐾 𝑤 ∈ (𝐴𝐹𝐿)))
28 eliun 4948 . . . 4 (𝑤 𝑥 ∈ ran (𝑧𝐾𝐿)(𝐴𝐹𝑥) ↔ ∃𝑥 ∈ ran (𝑧𝐾𝐿)𝑤 ∈ (𝐴𝐹𝑥))
29 eliun 4948 . . . 4 (𝑤 𝑧𝐾 (𝐴𝐹𝐿) ↔ ∃𝑧𝐾 𝑤 ∈ (𝐴𝐹𝐿))
3027, 28, 293bitr4g 314 . . 3 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝑤 𝑥 ∈ ran (𝑧𝐾𝐿)(𝐴𝐹𝑥) ↔ 𝑤 𝑧𝐾 (𝐴𝐹𝐿)))
3130eqrdv 2727 . 2 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → 𝑥 ∈ ran (𝑧𝐾𝐿)(𝐴𝐹𝑥) = 𝑧𝐾 (𝐴𝐹𝐿))
323, 23, 313eqtrd 2768 1 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝐴𝐹 𝑧𝐾 𝐿) = 𝑧𝐾 (𝐴𝐹𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3438  wss 3905  c0 4286   cuni 4861   ciun 4944  cmpt 5176  dom cdm 5623  ran crn 5624  Oncon0 6311  Lim wlim 6312  wf 6482  (class class class)co 7353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356
This theorem is referenced by:  oeoalem  8521  oeoelem  8523
  Copyright terms: Public domain W3C validator