MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onoviun Structured version   Visualization version   GIF version

Theorem onoviun 8174
Description: A variant of onovuni 8173 with indexed unions. (Contributed by Eric Schmidt, 26-May-2009.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Hypotheses
Ref Expression
onovuni.1 (Lim 𝑦 → (𝐴𝐹𝑦) = 𝑥𝑦 (𝐴𝐹𝑥))
onovuni.2 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → (𝐴𝐹𝑥) ⊆ (𝐴𝐹𝑦))
Assertion
Ref Expression
onoviun ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝐴𝐹 𝑧𝐾 𝐿) = 𝑧𝐾 (𝐴𝐹𝐿))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐹,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧   𝑥,𝐿,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑧)   𝐿(𝑧)

Proof of Theorem onoviun
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dfiun3g 5873 . . . 4 (∀𝑧𝐾 𝐿 ∈ On → 𝑧𝐾 𝐿 = ran (𝑧𝐾𝐿))
213ad2ant2 1133 . . 3 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → 𝑧𝐾 𝐿 = ran (𝑧𝐾𝐿))
32oveq2d 7291 . 2 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝐴𝐹 𝑧𝐾 𝐿) = (𝐴𝐹 ran (𝑧𝐾𝐿)))
4 simp1 1135 . . . 4 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → 𝐾𝑇)
5 mptexg 7097 . . . 4 (𝐾𝑇 → (𝑧𝐾𝐿) ∈ V)
6 rnexg 7751 . . . 4 ((𝑧𝐾𝐿) ∈ V → ran (𝑧𝐾𝐿) ∈ V)
74, 5, 63syl 18 . . 3 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → ran (𝑧𝐾𝐿) ∈ V)
8 simp2 1136 . . . . 5 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → ∀𝑧𝐾 𝐿 ∈ On)
9 eqid 2738 . . . . . 6 (𝑧𝐾𝐿) = (𝑧𝐾𝐿)
109fmpt 6984 . . . . 5 (∀𝑧𝐾 𝐿 ∈ On ↔ (𝑧𝐾𝐿):𝐾⟶On)
118, 10sylib 217 . . . 4 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝑧𝐾𝐿):𝐾⟶On)
1211frnd 6608 . . 3 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → ran (𝑧𝐾𝐿) ⊆ On)
13 dmmptg 6145 . . . . . 6 (∀𝑧𝐾 𝐿 ∈ On → dom (𝑧𝐾𝐿) = 𝐾)
14133ad2ant2 1133 . . . . 5 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → dom (𝑧𝐾𝐿) = 𝐾)
15 simp3 1137 . . . . 5 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → 𝐾 ≠ ∅)
1614, 15eqnetrd 3011 . . . 4 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → dom (𝑧𝐾𝐿) ≠ ∅)
17 dm0rn0 5834 . . . . 5 (dom (𝑧𝐾𝐿) = ∅ ↔ ran (𝑧𝐾𝐿) = ∅)
1817necon3bii 2996 . . . 4 (dom (𝑧𝐾𝐿) ≠ ∅ ↔ ran (𝑧𝐾𝐿) ≠ ∅)
1916, 18sylib 217 . . 3 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → ran (𝑧𝐾𝐿) ≠ ∅)
20 onovuni.1 . . . 4 (Lim 𝑦 → (𝐴𝐹𝑦) = 𝑥𝑦 (𝐴𝐹𝑥))
21 onovuni.2 . . . 4 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → (𝐴𝐹𝑥) ⊆ (𝐴𝐹𝑦))
2220, 21onovuni 8173 . . 3 ((ran (𝑧𝐾𝐿) ∈ V ∧ ran (𝑧𝐾𝐿) ⊆ On ∧ ran (𝑧𝐾𝐿) ≠ ∅) → (𝐴𝐹 ran (𝑧𝐾𝐿)) = 𝑥 ∈ ran (𝑧𝐾𝐿)(𝐴𝐹𝑥))
237, 12, 19, 22syl3anc 1370 . 2 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝐴𝐹 ran (𝑧𝐾𝐿)) = 𝑥 ∈ ran (𝑧𝐾𝐿)(𝐴𝐹𝑥))
24 oveq2 7283 . . . . . . 7 (𝑥 = 𝐿 → (𝐴𝐹𝑥) = (𝐴𝐹𝐿))
2524eleq2d 2824 . . . . . 6 (𝑥 = 𝐿 → (𝑤 ∈ (𝐴𝐹𝑥) ↔ 𝑤 ∈ (𝐴𝐹𝐿)))
269, 25rexrnmptw 6971 . . . . 5 (∀𝑧𝐾 𝐿 ∈ On → (∃𝑥 ∈ ran (𝑧𝐾𝐿)𝑤 ∈ (𝐴𝐹𝑥) ↔ ∃𝑧𝐾 𝑤 ∈ (𝐴𝐹𝐿)))
27263ad2ant2 1133 . . . 4 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (∃𝑥 ∈ ran (𝑧𝐾𝐿)𝑤 ∈ (𝐴𝐹𝑥) ↔ ∃𝑧𝐾 𝑤 ∈ (𝐴𝐹𝐿)))
28 eliun 4928 . . . 4 (𝑤 𝑥 ∈ ran (𝑧𝐾𝐿)(𝐴𝐹𝑥) ↔ ∃𝑥 ∈ ran (𝑧𝐾𝐿)𝑤 ∈ (𝐴𝐹𝑥))
29 eliun 4928 . . . 4 (𝑤 𝑧𝐾 (𝐴𝐹𝐿) ↔ ∃𝑧𝐾 𝑤 ∈ (𝐴𝐹𝐿))
3027, 28, 293bitr4g 314 . . 3 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝑤 𝑥 ∈ ran (𝑧𝐾𝐿)(𝐴𝐹𝑥) ↔ 𝑤 𝑧𝐾 (𝐴𝐹𝐿)))
3130eqrdv 2736 . 2 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → 𝑥 ∈ ran (𝑧𝐾𝐿)(𝐴𝐹𝑥) = 𝑧𝐾 (𝐴𝐹𝐿))
323, 23, 313eqtrd 2782 1 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝐴𝐹 𝑧𝐾 𝐿) = 𝑧𝐾 (𝐴𝐹𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  wss 3887  c0 4256   cuni 4839   ciun 4924  cmpt 5157  dom cdm 5589  ran crn 5590  Oncon0 6266  Lim wlim 6267  wf 6429  (class class class)co 7275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278
This theorem is referenced by:  oeoalem  8427  oeoelem  8429
  Copyright terms: Public domain W3C validator