MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onoviun Structured version   Visualization version   GIF version

Theorem onoviun 8383
Description: A variant of onovuni 8382 with indexed unions. (Contributed by Eric Schmidt, 26-May-2009.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Hypotheses
Ref Expression
onovuni.1 (Lim 𝑦 → (𝐴𝐹𝑦) = 𝑥𝑦 (𝐴𝐹𝑥))
onovuni.2 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → (𝐴𝐹𝑥) ⊆ (𝐴𝐹𝑦))
Assertion
Ref Expression
onoviun ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝐴𝐹 𝑧𝐾 𝐿) = 𝑧𝐾 (𝐴𝐹𝐿))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐹,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧   𝑥,𝐿,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑧)   𝐿(𝑧)

Proof of Theorem onoviun
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dfiun3g 5978 . . . 4 (∀𝑧𝐾 𝐿 ∈ On → 𝑧𝐾 𝐿 = ran (𝑧𝐾𝐿))
213ad2ant2 1135 . . 3 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → 𝑧𝐾 𝐿 = ran (𝑧𝐾𝐿))
32oveq2d 7447 . 2 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝐴𝐹 𝑧𝐾 𝐿) = (𝐴𝐹 ran (𝑧𝐾𝐿)))
4 simp1 1137 . . . 4 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → 𝐾𝑇)
5 mptexg 7241 . . . 4 (𝐾𝑇 → (𝑧𝐾𝐿) ∈ V)
6 rnexg 7924 . . . 4 ((𝑧𝐾𝐿) ∈ V → ran (𝑧𝐾𝐿) ∈ V)
74, 5, 63syl 18 . . 3 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → ran (𝑧𝐾𝐿) ∈ V)
8 simp2 1138 . . . . 5 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → ∀𝑧𝐾 𝐿 ∈ On)
9 eqid 2737 . . . . . 6 (𝑧𝐾𝐿) = (𝑧𝐾𝐿)
109fmpt 7130 . . . . 5 (∀𝑧𝐾 𝐿 ∈ On ↔ (𝑧𝐾𝐿):𝐾⟶On)
118, 10sylib 218 . . . 4 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝑧𝐾𝐿):𝐾⟶On)
1211frnd 6744 . . 3 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → ran (𝑧𝐾𝐿) ⊆ On)
13 dmmptg 6262 . . . . . 6 (∀𝑧𝐾 𝐿 ∈ On → dom (𝑧𝐾𝐿) = 𝐾)
14133ad2ant2 1135 . . . . 5 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → dom (𝑧𝐾𝐿) = 𝐾)
15 simp3 1139 . . . . 5 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → 𝐾 ≠ ∅)
1614, 15eqnetrd 3008 . . . 4 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → dom (𝑧𝐾𝐿) ≠ ∅)
17 dm0rn0 5935 . . . . 5 (dom (𝑧𝐾𝐿) = ∅ ↔ ran (𝑧𝐾𝐿) = ∅)
1817necon3bii 2993 . . . 4 (dom (𝑧𝐾𝐿) ≠ ∅ ↔ ran (𝑧𝐾𝐿) ≠ ∅)
1916, 18sylib 218 . . 3 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → ran (𝑧𝐾𝐿) ≠ ∅)
20 onovuni.1 . . . 4 (Lim 𝑦 → (𝐴𝐹𝑦) = 𝑥𝑦 (𝐴𝐹𝑥))
21 onovuni.2 . . . 4 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → (𝐴𝐹𝑥) ⊆ (𝐴𝐹𝑦))
2220, 21onovuni 8382 . . 3 ((ran (𝑧𝐾𝐿) ∈ V ∧ ran (𝑧𝐾𝐿) ⊆ On ∧ ran (𝑧𝐾𝐿) ≠ ∅) → (𝐴𝐹 ran (𝑧𝐾𝐿)) = 𝑥 ∈ ran (𝑧𝐾𝐿)(𝐴𝐹𝑥))
237, 12, 19, 22syl3anc 1373 . 2 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝐴𝐹 ran (𝑧𝐾𝐿)) = 𝑥 ∈ ran (𝑧𝐾𝐿)(𝐴𝐹𝑥))
24 oveq2 7439 . . . . . . 7 (𝑥 = 𝐿 → (𝐴𝐹𝑥) = (𝐴𝐹𝐿))
2524eleq2d 2827 . . . . . 6 (𝑥 = 𝐿 → (𝑤 ∈ (𝐴𝐹𝑥) ↔ 𝑤 ∈ (𝐴𝐹𝐿)))
269, 25rexrnmptw 7115 . . . . 5 (∀𝑧𝐾 𝐿 ∈ On → (∃𝑥 ∈ ran (𝑧𝐾𝐿)𝑤 ∈ (𝐴𝐹𝑥) ↔ ∃𝑧𝐾 𝑤 ∈ (𝐴𝐹𝐿)))
27263ad2ant2 1135 . . . 4 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (∃𝑥 ∈ ran (𝑧𝐾𝐿)𝑤 ∈ (𝐴𝐹𝑥) ↔ ∃𝑧𝐾 𝑤 ∈ (𝐴𝐹𝐿)))
28 eliun 4995 . . . 4 (𝑤 𝑥 ∈ ran (𝑧𝐾𝐿)(𝐴𝐹𝑥) ↔ ∃𝑥 ∈ ran (𝑧𝐾𝐿)𝑤 ∈ (𝐴𝐹𝑥))
29 eliun 4995 . . . 4 (𝑤 𝑧𝐾 (𝐴𝐹𝐿) ↔ ∃𝑧𝐾 𝑤 ∈ (𝐴𝐹𝐿))
3027, 28, 293bitr4g 314 . . 3 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝑤 𝑥 ∈ ran (𝑧𝐾𝐿)(𝐴𝐹𝑥) ↔ 𝑤 𝑧𝐾 (𝐴𝐹𝐿)))
3130eqrdv 2735 . 2 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → 𝑥 ∈ ran (𝑧𝐾𝐿)(𝐴𝐹𝑥) = 𝑧𝐾 (𝐴𝐹𝐿))
323, 23, 313eqtrd 2781 1 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝐴𝐹 𝑧𝐾 𝐿) = 𝑧𝐾 (𝐴𝐹𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  Vcvv 3480  wss 3951  c0 4333   cuni 4907   ciun 4991  cmpt 5225  dom cdm 5685  ran crn 5686  Oncon0 6384  Lim wlim 6385  wf 6557  (class class class)co 7431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434
This theorem is referenced by:  oeoalem  8634  oeoelem  8636
  Copyright terms: Public domain W3C validator