| Step | Hyp | Ref
| Expression |
| 1 | | dfiun3g 5978 |
. . . 4
⊢
(∀𝑧 ∈
𝐾 𝐿 ∈ On → ∪ 𝑧 ∈ 𝐾 𝐿 = ∪ ran (𝑧 ∈ 𝐾 ↦ 𝐿)) |
| 2 | 1 | 3ad2ant2 1135 |
. . 3
⊢ ((𝐾 ∈ 𝑇 ∧ ∀𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → ∪ 𝑧 ∈ 𝐾 𝐿 = ∪ ran (𝑧 ∈ 𝐾 ↦ 𝐿)) |
| 3 | 2 | oveq2d 7447 |
. 2
⊢ ((𝐾 ∈ 𝑇 ∧ ∀𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝐴𝐹∪ 𝑧 ∈ 𝐾 𝐿) = (𝐴𝐹∪ ran (𝑧 ∈ 𝐾 ↦ 𝐿))) |
| 4 | | simp1 1137 |
. . . 4
⊢ ((𝐾 ∈ 𝑇 ∧ ∀𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → 𝐾 ∈ 𝑇) |
| 5 | | mptexg 7241 |
. . . 4
⊢ (𝐾 ∈ 𝑇 → (𝑧 ∈ 𝐾 ↦ 𝐿) ∈ V) |
| 6 | | rnexg 7924 |
. . . 4
⊢ ((𝑧 ∈ 𝐾 ↦ 𝐿) ∈ V → ran (𝑧 ∈ 𝐾 ↦ 𝐿) ∈ V) |
| 7 | 4, 5, 6 | 3syl 18 |
. . 3
⊢ ((𝐾 ∈ 𝑇 ∧ ∀𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → ran (𝑧 ∈ 𝐾 ↦ 𝐿) ∈ V) |
| 8 | | simp2 1138 |
. . . . 5
⊢ ((𝐾 ∈ 𝑇 ∧ ∀𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → ∀𝑧 ∈ 𝐾 𝐿 ∈ On) |
| 9 | | eqid 2737 |
. . . . . 6
⊢ (𝑧 ∈ 𝐾 ↦ 𝐿) = (𝑧 ∈ 𝐾 ↦ 𝐿) |
| 10 | 9 | fmpt 7130 |
. . . . 5
⊢
(∀𝑧 ∈
𝐾 𝐿 ∈ On ↔ (𝑧 ∈ 𝐾 ↦ 𝐿):𝐾⟶On) |
| 11 | 8, 10 | sylib 218 |
. . . 4
⊢ ((𝐾 ∈ 𝑇 ∧ ∀𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝑧 ∈ 𝐾 ↦ 𝐿):𝐾⟶On) |
| 12 | 11 | frnd 6744 |
. . 3
⊢ ((𝐾 ∈ 𝑇 ∧ ∀𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → ran (𝑧 ∈ 𝐾 ↦ 𝐿) ⊆ On) |
| 13 | | dmmptg 6262 |
. . . . . 6
⊢
(∀𝑧 ∈
𝐾 𝐿 ∈ On → dom (𝑧 ∈ 𝐾 ↦ 𝐿) = 𝐾) |
| 14 | 13 | 3ad2ant2 1135 |
. . . . 5
⊢ ((𝐾 ∈ 𝑇 ∧ ∀𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → dom (𝑧 ∈ 𝐾 ↦ 𝐿) = 𝐾) |
| 15 | | simp3 1139 |
. . . . 5
⊢ ((𝐾 ∈ 𝑇 ∧ ∀𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → 𝐾 ≠ ∅) |
| 16 | 14, 15 | eqnetrd 3008 |
. . . 4
⊢ ((𝐾 ∈ 𝑇 ∧ ∀𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → dom (𝑧 ∈ 𝐾 ↦ 𝐿) ≠ ∅) |
| 17 | | dm0rn0 5935 |
. . . . 5
⊢ (dom
(𝑧 ∈ 𝐾 ↦ 𝐿) = ∅ ↔ ran (𝑧 ∈ 𝐾 ↦ 𝐿) = ∅) |
| 18 | 17 | necon3bii 2993 |
. . . 4
⊢ (dom
(𝑧 ∈ 𝐾 ↦ 𝐿) ≠ ∅ ↔ ran (𝑧 ∈ 𝐾 ↦ 𝐿) ≠ ∅) |
| 19 | 16, 18 | sylib 218 |
. . 3
⊢ ((𝐾 ∈ 𝑇 ∧ ∀𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → ran (𝑧 ∈ 𝐾 ↦ 𝐿) ≠ ∅) |
| 20 | | onovuni.1 |
. . . 4
⊢ (Lim
𝑦 → (𝐴𝐹𝑦) = ∪ 𝑥 ∈ 𝑦 (𝐴𝐹𝑥)) |
| 21 | | onovuni.2 |
. . . 4
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ⊆ 𝑦) → (𝐴𝐹𝑥) ⊆ (𝐴𝐹𝑦)) |
| 22 | 20, 21 | onovuni 8382 |
. . 3
⊢ ((ran
(𝑧 ∈ 𝐾 ↦ 𝐿) ∈ V ∧ ran (𝑧 ∈ 𝐾 ↦ 𝐿) ⊆ On ∧ ran (𝑧 ∈ 𝐾 ↦ 𝐿) ≠ ∅) → (𝐴𝐹∪ ran (𝑧 ∈ 𝐾 ↦ 𝐿)) = ∪
𝑥 ∈ ran (𝑧 ∈ 𝐾 ↦ 𝐿)(𝐴𝐹𝑥)) |
| 23 | 7, 12, 19, 22 | syl3anc 1373 |
. 2
⊢ ((𝐾 ∈ 𝑇 ∧ ∀𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝐴𝐹∪ ran (𝑧 ∈ 𝐾 ↦ 𝐿)) = ∪
𝑥 ∈ ran (𝑧 ∈ 𝐾 ↦ 𝐿)(𝐴𝐹𝑥)) |
| 24 | | oveq2 7439 |
. . . . . . 7
⊢ (𝑥 = 𝐿 → (𝐴𝐹𝑥) = (𝐴𝐹𝐿)) |
| 25 | 24 | eleq2d 2827 |
. . . . . 6
⊢ (𝑥 = 𝐿 → (𝑤 ∈ (𝐴𝐹𝑥) ↔ 𝑤 ∈ (𝐴𝐹𝐿))) |
| 26 | 9, 25 | rexrnmptw 7115 |
. . . . 5
⊢
(∀𝑧 ∈
𝐾 𝐿 ∈ On → (∃𝑥 ∈ ran (𝑧 ∈ 𝐾 ↦ 𝐿)𝑤 ∈ (𝐴𝐹𝑥) ↔ ∃𝑧 ∈ 𝐾 𝑤 ∈ (𝐴𝐹𝐿))) |
| 27 | 26 | 3ad2ant2 1135 |
. . . 4
⊢ ((𝐾 ∈ 𝑇 ∧ ∀𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (∃𝑥 ∈ ran (𝑧 ∈ 𝐾 ↦ 𝐿)𝑤 ∈ (𝐴𝐹𝑥) ↔ ∃𝑧 ∈ 𝐾 𝑤 ∈ (𝐴𝐹𝐿))) |
| 28 | | eliun 4995 |
. . . 4
⊢ (𝑤 ∈ ∪ 𝑥 ∈ ran (𝑧 ∈ 𝐾 ↦ 𝐿)(𝐴𝐹𝑥) ↔ ∃𝑥 ∈ ran (𝑧 ∈ 𝐾 ↦ 𝐿)𝑤 ∈ (𝐴𝐹𝑥)) |
| 29 | | eliun 4995 |
. . . 4
⊢ (𝑤 ∈ ∪ 𝑧 ∈ 𝐾 (𝐴𝐹𝐿) ↔ ∃𝑧 ∈ 𝐾 𝑤 ∈ (𝐴𝐹𝐿)) |
| 30 | 27, 28, 29 | 3bitr4g 314 |
. . 3
⊢ ((𝐾 ∈ 𝑇 ∧ ∀𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝑤 ∈ ∪
𝑥 ∈ ran (𝑧 ∈ 𝐾 ↦ 𝐿)(𝐴𝐹𝑥) ↔ 𝑤 ∈ ∪
𝑧 ∈ 𝐾 (𝐴𝐹𝐿))) |
| 31 | 30 | eqrdv 2735 |
. 2
⊢ ((𝐾 ∈ 𝑇 ∧ ∀𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → ∪ 𝑥 ∈ ran (𝑧 ∈ 𝐾 ↦ 𝐿)(𝐴𝐹𝑥) = ∪ 𝑧 ∈ 𝐾 (𝐴𝐹𝐿)) |
| 32 | 3, 23, 31 | 3eqtrd 2781 |
1
⊢ ((𝐾 ∈ 𝑇 ∧ ∀𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝐴𝐹∪ 𝑧 ∈ 𝐾 𝐿) = ∪
𝑧 ∈ 𝐾 (𝐴𝐹𝐿)) |