Step | Hyp | Ref
| Expression |
1 | | dfiun3g 5862 |
. . . 4
⊢
(∀𝑧 ∈
𝐾 𝐿 ∈ On → ∪ 𝑧 ∈ 𝐾 𝐿 = ∪ ran (𝑧 ∈ 𝐾 ↦ 𝐿)) |
2 | 1 | 3ad2ant2 1132 |
. . 3
⊢ ((𝐾 ∈ 𝑇 ∧ ∀𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → ∪ 𝑧 ∈ 𝐾 𝐿 = ∪ ran (𝑧 ∈ 𝐾 ↦ 𝐿)) |
3 | 2 | oveq2d 7271 |
. 2
⊢ ((𝐾 ∈ 𝑇 ∧ ∀𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝐴𝐹∪ 𝑧 ∈ 𝐾 𝐿) = (𝐴𝐹∪ ran (𝑧 ∈ 𝐾 ↦ 𝐿))) |
4 | | simp1 1134 |
. . . 4
⊢ ((𝐾 ∈ 𝑇 ∧ ∀𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → 𝐾 ∈ 𝑇) |
5 | | mptexg 7079 |
. . . 4
⊢ (𝐾 ∈ 𝑇 → (𝑧 ∈ 𝐾 ↦ 𝐿) ∈ V) |
6 | | rnexg 7725 |
. . . 4
⊢ ((𝑧 ∈ 𝐾 ↦ 𝐿) ∈ V → ran (𝑧 ∈ 𝐾 ↦ 𝐿) ∈ V) |
7 | 4, 5, 6 | 3syl 18 |
. . 3
⊢ ((𝐾 ∈ 𝑇 ∧ ∀𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → ran (𝑧 ∈ 𝐾 ↦ 𝐿) ∈ V) |
8 | | simp2 1135 |
. . . . 5
⊢ ((𝐾 ∈ 𝑇 ∧ ∀𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → ∀𝑧 ∈ 𝐾 𝐿 ∈ On) |
9 | | eqid 2738 |
. . . . . 6
⊢ (𝑧 ∈ 𝐾 ↦ 𝐿) = (𝑧 ∈ 𝐾 ↦ 𝐿) |
10 | 9 | fmpt 6966 |
. . . . 5
⊢
(∀𝑧 ∈
𝐾 𝐿 ∈ On ↔ (𝑧 ∈ 𝐾 ↦ 𝐿):𝐾⟶On) |
11 | 8, 10 | sylib 217 |
. . . 4
⊢ ((𝐾 ∈ 𝑇 ∧ ∀𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝑧 ∈ 𝐾 ↦ 𝐿):𝐾⟶On) |
12 | 11 | frnd 6592 |
. . 3
⊢ ((𝐾 ∈ 𝑇 ∧ ∀𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → ran (𝑧 ∈ 𝐾 ↦ 𝐿) ⊆ On) |
13 | | dmmptg 6134 |
. . . . . 6
⊢
(∀𝑧 ∈
𝐾 𝐿 ∈ On → dom (𝑧 ∈ 𝐾 ↦ 𝐿) = 𝐾) |
14 | 13 | 3ad2ant2 1132 |
. . . . 5
⊢ ((𝐾 ∈ 𝑇 ∧ ∀𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → dom (𝑧 ∈ 𝐾 ↦ 𝐿) = 𝐾) |
15 | | simp3 1136 |
. . . . 5
⊢ ((𝐾 ∈ 𝑇 ∧ ∀𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → 𝐾 ≠ ∅) |
16 | 14, 15 | eqnetrd 3010 |
. . . 4
⊢ ((𝐾 ∈ 𝑇 ∧ ∀𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → dom (𝑧 ∈ 𝐾 ↦ 𝐿) ≠ ∅) |
17 | | dm0rn0 5823 |
. . . . 5
⊢ (dom
(𝑧 ∈ 𝐾 ↦ 𝐿) = ∅ ↔ ran (𝑧 ∈ 𝐾 ↦ 𝐿) = ∅) |
18 | 17 | necon3bii 2995 |
. . . 4
⊢ (dom
(𝑧 ∈ 𝐾 ↦ 𝐿) ≠ ∅ ↔ ran (𝑧 ∈ 𝐾 ↦ 𝐿) ≠ ∅) |
19 | 16, 18 | sylib 217 |
. . 3
⊢ ((𝐾 ∈ 𝑇 ∧ ∀𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → ran (𝑧 ∈ 𝐾 ↦ 𝐿) ≠ ∅) |
20 | | onovuni.1 |
. . . 4
⊢ (Lim
𝑦 → (𝐴𝐹𝑦) = ∪ 𝑥 ∈ 𝑦 (𝐴𝐹𝑥)) |
21 | | onovuni.2 |
. . . 4
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ⊆ 𝑦) → (𝐴𝐹𝑥) ⊆ (𝐴𝐹𝑦)) |
22 | 20, 21 | onovuni 8144 |
. . 3
⊢ ((ran
(𝑧 ∈ 𝐾 ↦ 𝐿) ∈ V ∧ ran (𝑧 ∈ 𝐾 ↦ 𝐿) ⊆ On ∧ ran (𝑧 ∈ 𝐾 ↦ 𝐿) ≠ ∅) → (𝐴𝐹∪ ran (𝑧 ∈ 𝐾 ↦ 𝐿)) = ∪
𝑥 ∈ ran (𝑧 ∈ 𝐾 ↦ 𝐿)(𝐴𝐹𝑥)) |
23 | 7, 12, 19, 22 | syl3anc 1369 |
. 2
⊢ ((𝐾 ∈ 𝑇 ∧ ∀𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝐴𝐹∪ ran (𝑧 ∈ 𝐾 ↦ 𝐿)) = ∪
𝑥 ∈ ran (𝑧 ∈ 𝐾 ↦ 𝐿)(𝐴𝐹𝑥)) |
24 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑥 = 𝐿 → (𝐴𝐹𝑥) = (𝐴𝐹𝐿)) |
25 | 24 | eleq2d 2824 |
. . . . . 6
⊢ (𝑥 = 𝐿 → (𝑤 ∈ (𝐴𝐹𝑥) ↔ 𝑤 ∈ (𝐴𝐹𝐿))) |
26 | 9, 25 | rexrnmptw 6953 |
. . . . 5
⊢
(∀𝑧 ∈
𝐾 𝐿 ∈ On → (∃𝑥 ∈ ran (𝑧 ∈ 𝐾 ↦ 𝐿)𝑤 ∈ (𝐴𝐹𝑥) ↔ ∃𝑧 ∈ 𝐾 𝑤 ∈ (𝐴𝐹𝐿))) |
27 | 26 | 3ad2ant2 1132 |
. . . 4
⊢ ((𝐾 ∈ 𝑇 ∧ ∀𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (∃𝑥 ∈ ran (𝑧 ∈ 𝐾 ↦ 𝐿)𝑤 ∈ (𝐴𝐹𝑥) ↔ ∃𝑧 ∈ 𝐾 𝑤 ∈ (𝐴𝐹𝐿))) |
28 | | eliun 4925 |
. . . 4
⊢ (𝑤 ∈ ∪ 𝑥 ∈ ran (𝑧 ∈ 𝐾 ↦ 𝐿)(𝐴𝐹𝑥) ↔ ∃𝑥 ∈ ran (𝑧 ∈ 𝐾 ↦ 𝐿)𝑤 ∈ (𝐴𝐹𝑥)) |
29 | | eliun 4925 |
. . . 4
⊢ (𝑤 ∈ ∪ 𝑧 ∈ 𝐾 (𝐴𝐹𝐿) ↔ ∃𝑧 ∈ 𝐾 𝑤 ∈ (𝐴𝐹𝐿)) |
30 | 27, 28, 29 | 3bitr4g 313 |
. . 3
⊢ ((𝐾 ∈ 𝑇 ∧ ∀𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝑤 ∈ ∪
𝑥 ∈ ran (𝑧 ∈ 𝐾 ↦ 𝐿)(𝐴𝐹𝑥) ↔ 𝑤 ∈ ∪
𝑧 ∈ 𝐾 (𝐴𝐹𝐿))) |
31 | 30 | eqrdv 2736 |
. 2
⊢ ((𝐾 ∈ 𝑇 ∧ ∀𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → ∪ 𝑥 ∈ ran (𝑧 ∈ 𝐾 ↦ 𝐿)(𝐴𝐹𝑥) = ∪ 𝑧 ∈ 𝐾 (𝐴𝐹𝐿)) |
32 | 3, 23, 31 | 3eqtrd 2782 |
1
⊢ ((𝐾 ∈ 𝑇 ∧ ∀𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝐴𝐹∪ 𝑧 ∈ 𝐾 𝐿) = ∪
𝑧 ∈ 𝐾 (𝐴𝐹𝐿)) |