MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onoviun Structured version   Visualization version   GIF version

Theorem onoviun 7963
Description: A variant of onovuni 7962 with indexed unions. (Contributed by Eric Schmidt, 26-May-2009.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Hypotheses
Ref Expression
onovuni.1 (Lim 𝑦 → (𝐴𝐹𝑦) = 𝑥𝑦 (𝐴𝐹𝑥))
onovuni.2 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → (𝐴𝐹𝑥) ⊆ (𝐴𝐹𝑦))
Assertion
Ref Expression
onoviun ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝐴𝐹 𝑧𝐾 𝐿) = 𝑧𝐾 (𝐴𝐹𝐿))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐹,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧   𝑥,𝐿,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑧)   𝐿(𝑧)

Proof of Theorem onoviun
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dfiun3g 5800 . . . 4 (∀𝑧𝐾 𝐿 ∈ On → 𝑧𝐾 𝐿 = ran (𝑧𝐾𝐿))
213ad2ant2 1131 . . 3 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → 𝑧𝐾 𝐿 = ran (𝑧𝐾𝐿))
32oveq2d 7151 . 2 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝐴𝐹 𝑧𝐾 𝐿) = (𝐴𝐹 ran (𝑧𝐾𝐿)))
4 simp1 1133 . . . 4 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → 𝐾𝑇)
5 mptexg 6961 . . . 4 (𝐾𝑇 → (𝑧𝐾𝐿) ∈ V)
6 rnexg 7595 . . . 4 ((𝑧𝐾𝐿) ∈ V → ran (𝑧𝐾𝐿) ∈ V)
74, 5, 63syl 18 . . 3 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → ran (𝑧𝐾𝐿) ∈ V)
8 simp2 1134 . . . . 5 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → ∀𝑧𝐾 𝐿 ∈ On)
9 eqid 2798 . . . . . 6 (𝑧𝐾𝐿) = (𝑧𝐾𝐿)
109fmpt 6851 . . . . 5 (∀𝑧𝐾 𝐿 ∈ On ↔ (𝑧𝐾𝐿):𝐾⟶On)
118, 10sylib 221 . . . 4 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝑧𝐾𝐿):𝐾⟶On)
1211frnd 6494 . . 3 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → ran (𝑧𝐾𝐿) ⊆ On)
13 dmmptg 6063 . . . . . 6 (∀𝑧𝐾 𝐿 ∈ On → dom (𝑧𝐾𝐿) = 𝐾)
14133ad2ant2 1131 . . . . 5 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → dom (𝑧𝐾𝐿) = 𝐾)
15 simp3 1135 . . . . 5 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → 𝐾 ≠ ∅)
1614, 15eqnetrd 3054 . . . 4 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → dom (𝑧𝐾𝐿) ≠ ∅)
17 dm0rn0 5759 . . . . 5 (dom (𝑧𝐾𝐿) = ∅ ↔ ran (𝑧𝐾𝐿) = ∅)
1817necon3bii 3039 . . . 4 (dom (𝑧𝐾𝐿) ≠ ∅ ↔ ran (𝑧𝐾𝐿) ≠ ∅)
1916, 18sylib 221 . . 3 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → ran (𝑧𝐾𝐿) ≠ ∅)
20 onovuni.1 . . . 4 (Lim 𝑦 → (𝐴𝐹𝑦) = 𝑥𝑦 (𝐴𝐹𝑥))
21 onovuni.2 . . . 4 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → (𝐴𝐹𝑥) ⊆ (𝐴𝐹𝑦))
2220, 21onovuni 7962 . . 3 ((ran (𝑧𝐾𝐿) ∈ V ∧ ran (𝑧𝐾𝐿) ⊆ On ∧ ran (𝑧𝐾𝐿) ≠ ∅) → (𝐴𝐹 ran (𝑧𝐾𝐿)) = 𝑥 ∈ ran (𝑧𝐾𝐿)(𝐴𝐹𝑥))
237, 12, 19, 22syl3anc 1368 . 2 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝐴𝐹 ran (𝑧𝐾𝐿)) = 𝑥 ∈ ran (𝑧𝐾𝐿)(𝐴𝐹𝑥))
24 oveq2 7143 . . . . . . 7 (𝑥 = 𝐿 → (𝐴𝐹𝑥) = (𝐴𝐹𝐿))
2524eleq2d 2875 . . . . . 6 (𝑥 = 𝐿 → (𝑤 ∈ (𝐴𝐹𝑥) ↔ 𝑤 ∈ (𝐴𝐹𝐿)))
269, 25rexrnmptw 6838 . . . . 5 (∀𝑧𝐾 𝐿 ∈ On → (∃𝑥 ∈ ran (𝑧𝐾𝐿)𝑤 ∈ (𝐴𝐹𝑥) ↔ ∃𝑧𝐾 𝑤 ∈ (𝐴𝐹𝐿)))
27263ad2ant2 1131 . . . 4 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (∃𝑥 ∈ ran (𝑧𝐾𝐿)𝑤 ∈ (𝐴𝐹𝑥) ↔ ∃𝑧𝐾 𝑤 ∈ (𝐴𝐹𝐿)))
28 eliun 4885 . . . 4 (𝑤 𝑥 ∈ ran (𝑧𝐾𝐿)(𝐴𝐹𝑥) ↔ ∃𝑥 ∈ ran (𝑧𝐾𝐿)𝑤 ∈ (𝐴𝐹𝑥))
29 eliun 4885 . . . 4 (𝑤 𝑧𝐾 (𝐴𝐹𝐿) ↔ ∃𝑧𝐾 𝑤 ∈ (𝐴𝐹𝐿))
3027, 28, 293bitr4g 317 . . 3 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝑤 𝑥 ∈ ran (𝑧𝐾𝐿)(𝐴𝐹𝑥) ↔ 𝑤 𝑧𝐾 (𝐴𝐹𝐿)))
3130eqrdv 2796 . 2 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → 𝑥 ∈ ran (𝑧𝐾𝐿)(𝐴𝐹𝑥) = 𝑧𝐾 (𝐴𝐹𝐿))
323, 23, 313eqtrd 2837 1 ((𝐾𝑇 ∧ ∀𝑧𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝐴𝐹 𝑧𝐾 𝐿) = 𝑧𝐾 (𝐴𝐹𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  Vcvv 3441  wss 3881  c0 4243   cuni 4800   ciun 4881  cmpt 5110  dom cdm 5519  ran crn 5520  Oncon0 6159  Lim wlim 6160  wf 6320  (class class class)co 7135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-lim 6164  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138
This theorem is referenced by:  oeoalem  8205  oeoelem  8207
  Copyright terms: Public domain W3C validator