Step | Hyp | Ref
| Expression |
1 | | simplr 765 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ ran (𝑗 ∈ 𝐴 ↦ 𝐵)) ∧ 𝑥 ∈ 𝑦) → 𝑦 ∈ ran (𝑗 ∈ 𝐴 ↦ 𝐵)) |
2 | | vex 3426 |
. . . . . . 7
⊢ 𝑦 ∈ V |
3 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑗 ∈ 𝐴 ↦ 𝐵) = (𝑗 ∈ 𝐴 ↦ 𝐵) |
4 | 3 | elrnmpt 5854 |
. . . . . . 7
⊢ (𝑦 ∈ V → (𝑦 ∈ ran (𝑗 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑗 ∈ 𝐴 𝑦 = 𝐵)) |
5 | 2, 4 | ax-mp 5 |
. . . . . 6
⊢ (𝑦 ∈ ran (𝑗 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑗 ∈ 𝐴 𝑦 = 𝐵) |
6 | 1, 5 | sylib 217 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ ran (𝑗 ∈ 𝐴 ↦ 𝐵)) ∧ 𝑥 ∈ 𝑦) → ∃𝑗 ∈ 𝐴 𝑦 = 𝐵) |
7 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑗𝜑 |
8 | | acunirnmpt2f.c |
. . . . . . . . . 10
⊢
Ⅎ𝑗𝐶 |
9 | 8 | nfcri 2893 |
. . . . . . . . 9
⊢
Ⅎ𝑗 𝑥 ∈ 𝐶 |
10 | 7, 9 | nfan 1903 |
. . . . . . . 8
⊢
Ⅎ𝑗(𝜑 ∧ 𝑥 ∈ 𝐶) |
11 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑗𝑦 |
12 | | nfmpt1 5178 |
. . . . . . . . . 10
⊢
Ⅎ𝑗(𝑗 ∈ 𝐴 ↦ 𝐵) |
13 | 12 | nfrn 5850 |
. . . . . . . . 9
⊢
Ⅎ𝑗ran
(𝑗 ∈ 𝐴 ↦ 𝐵) |
14 | 11, 13 | nfel 2920 |
. . . . . . . 8
⊢
Ⅎ𝑗 𝑦 ∈ ran (𝑗 ∈ 𝐴 ↦ 𝐵) |
15 | 10, 14 | nfan 1903 |
. . . . . . 7
⊢
Ⅎ𝑗((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ ran (𝑗 ∈ 𝐴 ↦ 𝐵)) |
16 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑗 𝑥 ∈ 𝑦 |
17 | 15, 16 | nfan 1903 |
. . . . . 6
⊢
Ⅎ𝑗(((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ ran (𝑗 ∈ 𝐴 ↦ 𝐵)) ∧ 𝑥 ∈ 𝑦) |
18 | | simpllr 772 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ ran (𝑗 ∈ 𝐴 ↦ 𝐵)) ∧ 𝑥 ∈ 𝑦) ∧ 𝑗 ∈ 𝐴) ∧ 𝑦 = 𝐵) → 𝑥 ∈ 𝑦) |
19 | | simpr 484 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ ran (𝑗 ∈ 𝐴 ↦ 𝐵)) ∧ 𝑥 ∈ 𝑦) ∧ 𝑗 ∈ 𝐴) ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) |
20 | 18, 19 | eleqtrd 2841 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ ran (𝑗 ∈ 𝐴 ↦ 𝐵)) ∧ 𝑥 ∈ 𝑦) ∧ 𝑗 ∈ 𝐴) ∧ 𝑦 = 𝐵) → 𝑥 ∈ 𝐵) |
21 | 20 | ex 412 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ ran (𝑗 ∈ 𝐴 ↦ 𝐵)) ∧ 𝑥 ∈ 𝑦) ∧ 𝑗 ∈ 𝐴) → (𝑦 = 𝐵 → 𝑥 ∈ 𝐵)) |
22 | 21 | ex 412 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ ran (𝑗 ∈ 𝐴 ↦ 𝐵)) ∧ 𝑥 ∈ 𝑦) → (𝑗 ∈ 𝐴 → (𝑦 = 𝐵 → 𝑥 ∈ 𝐵))) |
23 | 17, 22 | reximdai 3239 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ ran (𝑗 ∈ 𝐴 ↦ 𝐵)) ∧ 𝑥 ∈ 𝑦) → (∃𝑗 ∈ 𝐴 𝑦 = 𝐵 → ∃𝑗 ∈ 𝐴 𝑥 ∈ 𝐵)) |
24 | 6, 23 | mpd 15 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ ran (𝑗 ∈ 𝐴 ↦ 𝐵)) ∧ 𝑥 ∈ 𝑦) → ∃𝑗 ∈ 𝐴 𝑥 ∈ 𝐵) |
25 | | acunirnmpt2f.2 |
. . . . . . . 8
⊢ 𝐶 = ∪ 𝑗 ∈ 𝐴 𝐵 |
26 | | acunirnmpt2f.4 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
27 | 26 | ralrimiva 3107 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑗 ∈ 𝐴 𝐵 ∈ 𝑊) |
28 | | dfiun3g 5862 |
. . . . . . . . 9
⊢
(∀𝑗 ∈
𝐴 𝐵 ∈ 𝑊 → ∪
𝑗 ∈ 𝐴 𝐵 = ∪ ran (𝑗 ∈ 𝐴 ↦ 𝐵)) |
29 | 27, 28 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ∪ 𝑗 ∈ 𝐴 𝐵 = ∪ ran (𝑗 ∈ 𝐴 ↦ 𝐵)) |
30 | 25, 29 | syl5eq 2791 |
. . . . . . 7
⊢ (𝜑 → 𝐶 = ∪ ran (𝑗 ∈ 𝐴 ↦ 𝐵)) |
31 | 30 | eleq2d 2824 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐶 ↔ 𝑥 ∈ ∪ ran
(𝑗 ∈ 𝐴 ↦ 𝐵))) |
32 | 31 | biimpa 476 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ ∪ ran
(𝑗 ∈ 𝐴 ↦ 𝐵)) |
33 | | eluni2 4840 |
. . . . 5
⊢ (𝑥 ∈ ∪ ran (𝑗 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑦 ∈ ran (𝑗 ∈ 𝐴 ↦ 𝐵)𝑥 ∈ 𝑦) |
34 | 32, 33 | sylib 217 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∃𝑦 ∈ ran (𝑗 ∈ 𝐴 ↦ 𝐵)𝑥 ∈ 𝑦) |
35 | 24, 34 | r19.29a 3217 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∃𝑗 ∈ 𝐴 𝑥 ∈ 𝐵) |
36 | 35 | ralrimiva 3107 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ∃𝑗 ∈ 𝐴 𝑥 ∈ 𝐵) |
37 | | acunirnmpt.0 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
38 | | aciunf1lem.a |
. . . . . . 7
⊢
Ⅎ𝑗𝐴 |
39 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑘𝐴 |
40 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑘𝐵 |
41 | | nfcsb1v 3853 |
. . . . . . 7
⊢
Ⅎ𝑗⦋𝑘 / 𝑗⦌𝐵 |
42 | | csbeq1a 3842 |
. . . . . . 7
⊢ (𝑗 = 𝑘 → 𝐵 = ⦋𝑘 / 𝑗⦌𝐵) |
43 | 38, 39, 40, 41, 42 | cbvmptf 5179 |
. . . . . 6
⊢ (𝑗 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ ⦋𝑘 / 𝑗⦌𝐵) |
44 | | mptexg 7079 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (𝑘 ∈ 𝐴 ↦ ⦋𝑘 / 𝑗⦌𝐵) ∈ V) |
45 | 43, 44 | eqeltrid 2843 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (𝑗 ∈ 𝐴 ↦ 𝐵) ∈ V) |
46 | | rnexg 7725 |
. . . . 5
⊢ ((𝑗 ∈ 𝐴 ↦ 𝐵) ∈ V → ran (𝑗 ∈ 𝐴 ↦ 𝐵) ∈ V) |
47 | | uniexg 7571 |
. . . . 5
⊢ (ran
(𝑗 ∈ 𝐴 ↦ 𝐵) ∈ V → ∪ ran (𝑗 ∈ 𝐴 ↦ 𝐵) ∈ V) |
48 | 37, 45, 46, 47 | 4syl 19 |
. . . 4
⊢ (𝜑 → ∪ ran (𝑗 ∈ 𝐴 ↦ 𝐵) ∈ V) |
49 | 30, 48 | eqeltrd 2839 |
. . 3
⊢ (𝜑 → 𝐶 ∈ V) |
50 | | id 22 |
. . . . . 6
⊢ (𝑐 = 𝐶 → 𝑐 = 𝐶) |
51 | 50 | raleqdv 3339 |
. . . . 5
⊢ (𝑐 = 𝐶 → (∀𝑥 ∈ 𝑐 ∃𝑗 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐶 ∃𝑗 ∈ 𝐴 𝑥 ∈ 𝐵)) |
52 | 50 | feq2d 6570 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → (𝑓:𝑐⟶𝐴 ↔ 𝑓:𝐶⟶𝐴)) |
53 | 50 | raleqdv 3339 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → (∀𝑥 ∈ 𝑐 𝑥 ∈ 𝐷 ↔ ∀𝑥 ∈ 𝐶 𝑥 ∈ 𝐷)) |
54 | 52, 53 | anbi12d 630 |
. . . . . 6
⊢ (𝑐 = 𝐶 → ((𝑓:𝑐⟶𝐴 ∧ ∀𝑥 ∈ 𝑐 𝑥 ∈ 𝐷) ↔ (𝑓:𝐶⟶𝐴 ∧ ∀𝑥 ∈ 𝐶 𝑥 ∈ 𝐷))) |
55 | 54 | exbidv 1925 |
. . . . 5
⊢ (𝑐 = 𝐶 → (∃𝑓(𝑓:𝑐⟶𝐴 ∧ ∀𝑥 ∈ 𝑐 𝑥 ∈ 𝐷) ↔ ∃𝑓(𝑓:𝐶⟶𝐴 ∧ ∀𝑥 ∈ 𝐶 𝑥 ∈ 𝐷))) |
56 | 51, 55 | imbi12d 344 |
. . . 4
⊢ (𝑐 = 𝐶 → ((∀𝑥 ∈ 𝑐 ∃𝑗 ∈ 𝐴 𝑥 ∈ 𝐵 → ∃𝑓(𝑓:𝑐⟶𝐴 ∧ ∀𝑥 ∈ 𝑐 𝑥 ∈ 𝐷)) ↔ (∀𝑥 ∈ 𝐶 ∃𝑗 ∈ 𝐴 𝑥 ∈ 𝐵 → ∃𝑓(𝑓:𝐶⟶𝐴 ∧ ∀𝑥 ∈ 𝐶 𝑥 ∈ 𝐷)))) |
57 | | acunirnmpt2f.d |
. . . . . 6
⊢
Ⅎ𝑗𝐷 |
58 | 57 | nfcri 2893 |
. . . . 5
⊢
Ⅎ𝑗 𝑥 ∈ 𝐷 |
59 | | vex 3426 |
. . . . 5
⊢ 𝑐 ∈ V |
60 | | acunirnmpt2f.3 |
. . . . . 6
⊢ (𝑗 = (𝑓‘𝑥) → 𝐵 = 𝐷) |
61 | 60 | eleq2d 2824 |
. . . . 5
⊢ (𝑗 = (𝑓‘𝑥) → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝐷)) |
62 | 38, 58, 59, 61 | ac6sf2 30861 |
. . . 4
⊢
(∀𝑥 ∈
𝑐 ∃𝑗 ∈ 𝐴 𝑥 ∈ 𝐵 → ∃𝑓(𝑓:𝑐⟶𝐴 ∧ ∀𝑥 ∈ 𝑐 𝑥 ∈ 𝐷)) |
63 | 56, 62 | vtoclg 3495 |
. . 3
⊢ (𝐶 ∈ V → (∀𝑥 ∈ 𝐶 ∃𝑗 ∈ 𝐴 𝑥 ∈ 𝐵 → ∃𝑓(𝑓:𝐶⟶𝐴 ∧ ∀𝑥 ∈ 𝐶 𝑥 ∈ 𝐷))) |
64 | 49, 63 | syl 17 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ 𝐶 ∃𝑗 ∈ 𝐴 𝑥 ∈ 𝐵 → ∃𝑓(𝑓:𝐶⟶𝐴 ∧ ∀𝑥 ∈ 𝐶 𝑥 ∈ 𝐷))) |
65 | 36, 64 | mpd 15 |
1
⊢ (𝜑 → ∃𝑓(𝑓:𝐶⟶𝐴 ∧ ∀𝑥 ∈ 𝐶 𝑥 ∈ 𝐷)) |