Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acunirnmpt2f Structured version   Visualization version   GIF version

Theorem acunirnmpt2f 32605
Description: Axiom of choice for the union of the range of a mapping to function. (Contributed by Thierry Arnoux, 7-Nov-2019.)
Hypotheses
Ref Expression
acunirnmpt.0 (𝜑𝐴𝑉)
acunirnmpt.1 ((𝜑𝑗𝐴) → 𝐵 ≠ ∅)
aciunf1lem.a 𝑗𝐴
acunirnmpt2f.c 𝑗𝐶
acunirnmpt2f.d 𝑗𝐷
acunirnmpt2f.2 𝐶 = 𝑗𝐴 𝐵
acunirnmpt2f.3 (𝑗 = (𝑓𝑥) → 𝐵 = 𝐷)
acunirnmpt2f.4 ((𝜑𝑗𝐴) → 𝐵𝑊)
Assertion
Ref Expression
acunirnmpt2f (𝜑 → ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷))
Distinct variable groups:   𝑥,𝑓,𝐴   𝐵,𝑓   𝐶,𝑓,𝑥   𝑓,𝑗,𝜑,𝑥
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑥,𝑗)   𝐶(𝑗)   𝐷(𝑥,𝑓,𝑗)   𝑉(𝑥,𝑓,𝑗)   𝑊(𝑥,𝑓,𝑗)

Proof of Theorem acunirnmpt2f
Dummy variables 𝑐 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . . 6 ((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) → 𝑦 ∈ ran (𝑗𝐴𝐵))
2 vex 3440 . . . . . . 7 𝑦 ∈ V
3 eqid 2729 . . . . . . . 8 (𝑗𝐴𝐵) = (𝑗𝐴𝐵)
43elrnmpt 5900 . . . . . . 7 (𝑦 ∈ V → (𝑦 ∈ ran (𝑗𝐴𝐵) ↔ ∃𝑗𝐴 𝑦 = 𝐵))
52, 4ax-mp 5 . . . . . 6 (𝑦 ∈ ran (𝑗𝐴𝐵) ↔ ∃𝑗𝐴 𝑦 = 𝐵)
61, 5sylib 218 . . . . 5 ((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) → ∃𝑗𝐴 𝑦 = 𝐵)
7 nfv 1914 . . . . . . . . 9 𝑗𝜑
8 acunirnmpt2f.c . . . . . . . . . 10 𝑗𝐶
98nfcri 2883 . . . . . . . . 9 𝑗 𝑥𝐶
107, 9nfan 1899 . . . . . . . 8 𝑗(𝜑𝑥𝐶)
11 nfcv 2891 . . . . . . . . 9 𝑗𝑦
12 nfmpt1 5191 . . . . . . . . . 10 𝑗(𝑗𝐴𝐵)
1312nfrn 5894 . . . . . . . . 9 𝑗ran (𝑗𝐴𝐵)
1411, 13nfel 2906 . . . . . . . 8 𝑗 𝑦 ∈ ran (𝑗𝐴𝐵)
1510, 14nfan 1899 . . . . . . 7 𝑗((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵))
16 nfv 1914 . . . . . . 7 𝑗 𝑥𝑦
1715, 16nfan 1899 . . . . . 6 𝑗(((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦)
18 simpllr 775 . . . . . . . . 9 ((((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝑥𝑦)
19 simpr 484 . . . . . . . . 9 ((((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵)
2018, 19eleqtrd 2830 . . . . . . . 8 ((((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝑥𝐵)
2120ex 412 . . . . . . 7 (((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) ∧ 𝑗𝐴) → (𝑦 = 𝐵𝑥𝐵))
2221ex 412 . . . . . 6 ((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) → (𝑗𝐴 → (𝑦 = 𝐵𝑥𝐵)))
2317, 22reximdai 3231 . . . . 5 ((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) → (∃𝑗𝐴 𝑦 = 𝐵 → ∃𝑗𝐴 𝑥𝐵))
246, 23mpd 15 . . . 4 ((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) → ∃𝑗𝐴 𝑥𝐵)
25 acunirnmpt2f.2 . . . . . . . 8 𝐶 = 𝑗𝐴 𝐵
26 acunirnmpt2f.4 . . . . . . . . . 10 ((𝜑𝑗𝐴) → 𝐵𝑊)
2726ralrimiva 3121 . . . . . . . . 9 (𝜑 → ∀𝑗𝐴 𝐵𝑊)
28 dfiun3g 5909 . . . . . . . . 9 (∀𝑗𝐴 𝐵𝑊 𝑗𝐴 𝐵 = ran (𝑗𝐴𝐵))
2927, 28syl 17 . . . . . . . 8 (𝜑 𝑗𝐴 𝐵 = ran (𝑗𝐴𝐵))
3025, 29eqtrid 2776 . . . . . . 7 (𝜑𝐶 = ran (𝑗𝐴𝐵))
3130eleq2d 2814 . . . . . 6 (𝜑 → (𝑥𝐶𝑥 ran (𝑗𝐴𝐵)))
3231biimpa 476 . . . . 5 ((𝜑𝑥𝐶) → 𝑥 ran (𝑗𝐴𝐵))
33 eluni2 4862 . . . . 5 (𝑥 ran (𝑗𝐴𝐵) ↔ ∃𝑦 ∈ ran (𝑗𝐴𝐵)𝑥𝑦)
3432, 33sylib 218 . . . 4 ((𝜑𝑥𝐶) → ∃𝑦 ∈ ran (𝑗𝐴𝐵)𝑥𝑦)
3524, 34r19.29a 3137 . . 3 ((𝜑𝑥𝐶) → ∃𝑗𝐴 𝑥𝐵)
3635ralrimiva 3121 . 2 (𝜑 → ∀𝑥𝐶𝑗𝐴 𝑥𝐵)
37 acunirnmpt.0 . . . . 5 (𝜑𝐴𝑉)
38 aciunf1lem.a . . . . . . 7 𝑗𝐴
39 nfcv 2891 . . . . . . 7 𝑘𝐴
40 nfcv 2891 . . . . . . 7 𝑘𝐵
41 nfcsb1v 3875 . . . . . . 7 𝑗𝑘 / 𝑗𝐵
42 csbeq1a 3865 . . . . . . 7 (𝑗 = 𝑘𝐵 = 𝑘 / 𝑗𝐵)
4338, 39, 40, 41, 42cbvmptf 5192 . . . . . 6 (𝑗𝐴𝐵) = (𝑘𝐴𝑘 / 𝑗𝐵)
44 mptexg 7157 . . . . . 6 (𝐴𝑉 → (𝑘𝐴𝑘 / 𝑗𝐵) ∈ V)
4543, 44eqeltrid 2832 . . . . 5 (𝐴𝑉 → (𝑗𝐴𝐵) ∈ V)
46 rnexg 7835 . . . . 5 ((𝑗𝐴𝐵) ∈ V → ran (𝑗𝐴𝐵) ∈ V)
47 uniexg 7676 . . . . 5 (ran (𝑗𝐴𝐵) ∈ V → ran (𝑗𝐴𝐵) ∈ V)
4837, 45, 46, 474syl 19 . . . 4 (𝜑 ran (𝑗𝐴𝐵) ∈ V)
4930, 48eqeltrd 2828 . . 3 (𝜑𝐶 ∈ V)
50 id 22 . . . . . 6 (𝑐 = 𝐶𝑐 = 𝐶)
5150raleqdv 3289 . . . . 5 (𝑐 = 𝐶 → (∀𝑥𝑐𝑗𝐴 𝑥𝐵 ↔ ∀𝑥𝐶𝑗𝐴 𝑥𝐵))
5250feq2d 6636 . . . . . . 7 (𝑐 = 𝐶 → (𝑓:𝑐𝐴𝑓:𝐶𝐴))
5350raleqdv 3289 . . . . . . 7 (𝑐 = 𝐶 → (∀𝑥𝑐 𝑥𝐷 ↔ ∀𝑥𝐶 𝑥𝐷))
5452, 53anbi12d 632 . . . . . 6 (𝑐 = 𝐶 → ((𝑓:𝑐𝐴 ∧ ∀𝑥𝑐 𝑥𝐷) ↔ (𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷)))
5554exbidv 1921 . . . . 5 (𝑐 = 𝐶 → (∃𝑓(𝑓:𝑐𝐴 ∧ ∀𝑥𝑐 𝑥𝐷) ↔ ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷)))
5651, 55imbi12d 344 . . . 4 (𝑐 = 𝐶 → ((∀𝑥𝑐𝑗𝐴 𝑥𝐵 → ∃𝑓(𝑓:𝑐𝐴 ∧ ∀𝑥𝑐 𝑥𝐷)) ↔ (∀𝑥𝐶𝑗𝐴 𝑥𝐵 → ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷))))
57 acunirnmpt2f.d . . . . . 6 𝑗𝐷
5857nfcri 2883 . . . . 5 𝑗 𝑥𝐷
59 vex 3440 . . . . 5 𝑐 ∈ V
60 acunirnmpt2f.3 . . . . . 6 (𝑗 = (𝑓𝑥) → 𝐵 = 𝐷)
6160eleq2d 2814 . . . . 5 (𝑗 = (𝑓𝑥) → (𝑥𝐵𝑥𝐷))
6238, 58, 59, 61ac6sf2 32567 . . . 4 (∀𝑥𝑐𝑗𝐴 𝑥𝐵 → ∃𝑓(𝑓:𝑐𝐴 ∧ ∀𝑥𝑐 𝑥𝐷))
6356, 62vtoclg 3509 . . 3 (𝐶 ∈ V → (∀𝑥𝐶𝑗𝐴 𝑥𝐵 → ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷)))
6449, 63syl 17 . 2 (𝜑 → (∀𝑥𝐶𝑗𝐴 𝑥𝐵 → ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷)))
6536, 64mpd 15 1 (𝜑 → ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wnfc 2876  wne 2925  wral 3044  wrex 3053  Vcvv 3436  csb 3851  c0 4284   cuni 4858   ciun 4941  cmpt 5173  ran crn 5620  wf 6478  cfv 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-reg 9484  ax-inf2 9537  ax-ac2 10357
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-en 8873  df-r1 9660  df-rank 9661  df-card 9835  df-ac 10010
This theorem is referenced by:  aciunf1lem  32606
  Copyright terms: Public domain W3C validator