Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acunirnmpt2f Structured version   Visualization version   GIF version

Theorem acunirnmpt2f 32643
Description: Axiom of choice for the union of the range of a mapping to function. (Contributed by Thierry Arnoux, 7-Nov-2019.)
Hypotheses
Ref Expression
acunirnmpt.0 (𝜑𝐴𝑉)
acunirnmpt.1 ((𝜑𝑗𝐴) → 𝐵 ≠ ∅)
aciunf1lem.a 𝑗𝐴
acunirnmpt2f.c 𝑗𝐶
acunirnmpt2f.d 𝑗𝐷
acunirnmpt2f.2 𝐶 = 𝑗𝐴 𝐵
acunirnmpt2f.3 (𝑗 = (𝑓𝑥) → 𝐵 = 𝐷)
acunirnmpt2f.4 ((𝜑𝑗𝐴) → 𝐵𝑊)
Assertion
Ref Expression
acunirnmpt2f (𝜑 → ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷))
Distinct variable groups:   𝑥,𝑓,𝐴   𝐵,𝑓   𝐶,𝑓,𝑥   𝑓,𝑗,𝜑,𝑥
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑥,𝑗)   𝐶(𝑗)   𝐷(𝑥,𝑓,𝑗)   𝑉(𝑥,𝑓,𝑗)   𝑊(𝑥,𝑓,𝑗)

Proof of Theorem acunirnmpt2f
Dummy variables 𝑐 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . . 6 ((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) → 𝑦 ∈ ran (𝑗𝐴𝐵))
2 vex 3440 . . . . . . 7 𝑦 ∈ V
3 eqid 2731 . . . . . . . 8 (𝑗𝐴𝐵) = (𝑗𝐴𝐵)
43elrnmpt 5897 . . . . . . 7 (𝑦 ∈ V → (𝑦 ∈ ran (𝑗𝐴𝐵) ↔ ∃𝑗𝐴 𝑦 = 𝐵))
52, 4ax-mp 5 . . . . . 6 (𝑦 ∈ ran (𝑗𝐴𝐵) ↔ ∃𝑗𝐴 𝑦 = 𝐵)
61, 5sylib 218 . . . . 5 ((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) → ∃𝑗𝐴 𝑦 = 𝐵)
7 nfv 1915 . . . . . . . . 9 𝑗𝜑
8 acunirnmpt2f.c . . . . . . . . . 10 𝑗𝐶
98nfcri 2886 . . . . . . . . 9 𝑗 𝑥𝐶
107, 9nfan 1900 . . . . . . . 8 𝑗(𝜑𝑥𝐶)
11 nfcv 2894 . . . . . . . . 9 𝑗𝑦
12 nfmpt1 5188 . . . . . . . . . 10 𝑗(𝑗𝐴𝐵)
1312nfrn 5891 . . . . . . . . 9 𝑗ran (𝑗𝐴𝐵)
1411, 13nfel 2909 . . . . . . . 8 𝑗 𝑦 ∈ ran (𝑗𝐴𝐵)
1510, 14nfan 1900 . . . . . . 7 𝑗((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵))
16 nfv 1915 . . . . . . 7 𝑗 𝑥𝑦
1715, 16nfan 1900 . . . . . 6 𝑗(((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦)
18 simpllr 775 . . . . . . . . 9 ((((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝑥𝑦)
19 simpr 484 . . . . . . . . 9 ((((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵)
2018, 19eleqtrd 2833 . . . . . . . 8 ((((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝑥𝐵)
2120ex 412 . . . . . . 7 (((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) ∧ 𝑗𝐴) → (𝑦 = 𝐵𝑥𝐵))
2221ex 412 . . . . . 6 ((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) → (𝑗𝐴 → (𝑦 = 𝐵𝑥𝐵)))
2317, 22reximdai 3234 . . . . 5 ((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) → (∃𝑗𝐴 𝑦 = 𝐵 → ∃𝑗𝐴 𝑥𝐵))
246, 23mpd 15 . . . 4 ((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) → ∃𝑗𝐴 𝑥𝐵)
25 acunirnmpt2f.2 . . . . . . . 8 𝐶 = 𝑗𝐴 𝐵
26 acunirnmpt2f.4 . . . . . . . . . 10 ((𝜑𝑗𝐴) → 𝐵𝑊)
2726ralrimiva 3124 . . . . . . . . 9 (𝜑 → ∀𝑗𝐴 𝐵𝑊)
28 dfiun3g 5906 . . . . . . . . 9 (∀𝑗𝐴 𝐵𝑊 𝑗𝐴 𝐵 = ran (𝑗𝐴𝐵))
2927, 28syl 17 . . . . . . . 8 (𝜑 𝑗𝐴 𝐵 = ran (𝑗𝐴𝐵))
3025, 29eqtrid 2778 . . . . . . 7 (𝜑𝐶 = ran (𝑗𝐴𝐵))
3130eleq2d 2817 . . . . . 6 (𝜑 → (𝑥𝐶𝑥 ran (𝑗𝐴𝐵)))
3231biimpa 476 . . . . 5 ((𝜑𝑥𝐶) → 𝑥 ran (𝑗𝐴𝐵))
33 eluni2 4860 . . . . 5 (𝑥 ran (𝑗𝐴𝐵) ↔ ∃𝑦 ∈ ran (𝑗𝐴𝐵)𝑥𝑦)
3432, 33sylib 218 . . . 4 ((𝜑𝑥𝐶) → ∃𝑦 ∈ ran (𝑗𝐴𝐵)𝑥𝑦)
3524, 34r19.29a 3140 . . 3 ((𝜑𝑥𝐶) → ∃𝑗𝐴 𝑥𝐵)
3635ralrimiva 3124 . 2 (𝜑 → ∀𝑥𝐶𝑗𝐴 𝑥𝐵)
37 acunirnmpt.0 . . . . 5 (𝜑𝐴𝑉)
38 aciunf1lem.a . . . . . . 7 𝑗𝐴
39 nfcv 2894 . . . . . . 7 𝑘𝐴
40 nfcv 2894 . . . . . . 7 𝑘𝐵
41 nfcsb1v 3869 . . . . . . 7 𝑗𝑘 / 𝑗𝐵
42 csbeq1a 3859 . . . . . . 7 (𝑗 = 𝑘𝐵 = 𝑘 / 𝑗𝐵)
4338, 39, 40, 41, 42cbvmptf 5189 . . . . . 6 (𝑗𝐴𝐵) = (𝑘𝐴𝑘 / 𝑗𝐵)
44 mptexg 7155 . . . . . 6 (𝐴𝑉 → (𝑘𝐴𝑘 / 𝑗𝐵) ∈ V)
4543, 44eqeltrid 2835 . . . . 5 (𝐴𝑉 → (𝑗𝐴𝐵) ∈ V)
46 rnexg 7832 . . . . 5 ((𝑗𝐴𝐵) ∈ V → ran (𝑗𝐴𝐵) ∈ V)
47 uniexg 7673 . . . . 5 (ran (𝑗𝐴𝐵) ∈ V → ran (𝑗𝐴𝐵) ∈ V)
4837, 45, 46, 474syl 19 . . . 4 (𝜑 ran (𝑗𝐴𝐵) ∈ V)
4930, 48eqeltrd 2831 . . 3 (𝜑𝐶 ∈ V)
50 id 22 . . . . . 6 (𝑐 = 𝐶𝑐 = 𝐶)
5150raleqdv 3292 . . . . 5 (𝑐 = 𝐶 → (∀𝑥𝑐𝑗𝐴 𝑥𝐵 ↔ ∀𝑥𝐶𝑗𝐴 𝑥𝐵))
5250feq2d 6635 . . . . . . 7 (𝑐 = 𝐶 → (𝑓:𝑐𝐴𝑓:𝐶𝐴))
5350raleqdv 3292 . . . . . . 7 (𝑐 = 𝐶 → (∀𝑥𝑐 𝑥𝐷 ↔ ∀𝑥𝐶 𝑥𝐷))
5452, 53anbi12d 632 . . . . . 6 (𝑐 = 𝐶 → ((𝑓:𝑐𝐴 ∧ ∀𝑥𝑐 𝑥𝐷) ↔ (𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷)))
5554exbidv 1922 . . . . 5 (𝑐 = 𝐶 → (∃𝑓(𝑓:𝑐𝐴 ∧ ∀𝑥𝑐 𝑥𝐷) ↔ ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷)))
5651, 55imbi12d 344 . . . 4 (𝑐 = 𝐶 → ((∀𝑥𝑐𝑗𝐴 𝑥𝐵 → ∃𝑓(𝑓:𝑐𝐴 ∧ ∀𝑥𝑐 𝑥𝐷)) ↔ (∀𝑥𝐶𝑗𝐴 𝑥𝐵 → ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷))))
57 acunirnmpt2f.d . . . . . 6 𝑗𝐷
5857nfcri 2886 . . . . 5 𝑗 𝑥𝐷
59 vex 3440 . . . . 5 𝑐 ∈ V
60 acunirnmpt2f.3 . . . . . 6 (𝑗 = (𝑓𝑥) → 𝐵 = 𝐷)
6160eleq2d 2817 . . . . 5 (𝑗 = (𝑓𝑥) → (𝑥𝐵𝑥𝐷))
6238, 58, 59, 61ac6sf2 32605 . . . 4 (∀𝑥𝑐𝑗𝐴 𝑥𝐵 → ∃𝑓(𝑓:𝑐𝐴 ∧ ∀𝑥𝑐 𝑥𝐷))
6356, 62vtoclg 3507 . . 3 (𝐶 ∈ V → (∀𝑥𝐶𝑗𝐴 𝑥𝐵 → ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷)))
6449, 63syl 17 . 2 (𝜑 → (∀𝑥𝐶𝑗𝐴 𝑥𝐵 → ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷)))
6536, 64mpd 15 1 (𝜑 → ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wnfc 2879  wne 2928  wral 3047  wrex 3056  Vcvv 3436  csb 3845  c0 4280   cuni 4856   ciun 4939  cmpt 5170  ran crn 5615  wf 6477  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-reg 9478  ax-inf2 9531  ax-ac2 10354
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-en 8870  df-r1 9657  df-rank 9658  df-card 9832  df-ac 10007
This theorem is referenced by:  aciunf1lem  32644
  Copyright terms: Public domain W3C validator