| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gruiun | Structured version Visualization version GIF version | ||
| Description: If 𝐵(𝑥) is a family of elements of 𝑈 and the index set 𝐴 is an element of 𝑈, then the indexed union ∪ 𝑥 ∈ 𝐴𝐵 is also an element of 𝑈, where 𝑈 is a Grothendieck universe. (Contributed by Mario Carneiro, 9-Jun-2013.) |
| Ref | Expression |
|---|---|
| gruiun | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | fnmpt 6661 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
| 3 | 1 | rnmptss 7098 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑈) |
| 4 | df-f 6518 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑈 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 ∧ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑈)) | |
| 5 | 2, 3, 4 | sylanbrc 583 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑈) |
| 6 | gruurn 10758 | . . . . . 6 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑈) → ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑈) | |
| 7 | 6 | 3expia 1121 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → ((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑈 → ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑈)) |
| 8 | 5, 7 | syl5com 31 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑈)) |
| 9 | dfiun3g 5934 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
| 10 | 9 | eleq1d 2814 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → (∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 ↔ ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑈)) |
| 11 | 8, 10 | sylibrd 259 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈)) |
| 12 | 11 | com12 32 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈)) |
| 13 | 12 | 3impia 1117 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 ∪ cuni 4874 ∪ ciun 4958 ↦ cmpt 5191 ran crn 5642 Fn wfn 6509 ⟶wf 6510 Univcgru 10750 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-gru 10751 |
| This theorem is referenced by: gruuni 10760 gruun 10766 gruixp 10769 grur1a 10779 grur1cld 44228 grucollcld 44256 |
| Copyright terms: Public domain | W3C validator |