![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gruiun | Structured version Visualization version GIF version |
Description: If 𝐵(𝑥) is a family of elements of 𝑈 and the index set 𝐴 is an element of 𝑈, then the indexed union ∪ 𝑥 ∈ 𝐴𝐵 is also an element of 𝑈, where 𝑈 is a Grothendieck universe. (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
gruiun | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | fnmpt 6703 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
3 | 1 | rnmptss 7139 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑈) |
4 | df-f 6560 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑈 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 ∧ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑈)) | |
5 | 2, 3, 4 | sylanbrc 581 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑈) |
6 | gruurn 10843 | . . . . . 6 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑈) → ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑈) | |
7 | 6 | 3expia 1118 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → ((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑈 → ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑈)) |
8 | 5, 7 | syl5com 31 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑈)) |
9 | dfiun3g 5973 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
10 | 9 | eleq1d 2811 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → (∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 ↔ ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑈)) |
11 | 8, 10 | sylibrd 258 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈)) |
12 | 11 | com12 32 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈)) |
13 | 12 | 3impia 1114 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 ∈ wcel 2099 ∀wral 3051 ⊆ wss 3947 ∪ cuni 4915 ∪ ciun 5003 ↦ cmpt 5238 ran crn 5685 Fn wfn 6551 ⟶wf 6552 Univcgru 10835 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5306 ax-nul 5313 ax-pow 5371 ax-pr 5435 ax-un 7748 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4916 df-iun 5005 df-br 5156 df-opab 5218 df-mpt 5239 df-tr 5273 df-id 5582 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-fv 6564 df-ov 7429 df-oprab 7430 df-mpo 7431 df-map 8859 df-gru 10836 |
This theorem is referenced by: gruuni 10845 gruun 10851 gruixp 10854 grur1a 10864 grur1cld 43924 grucollcld 43952 |
Copyright terms: Public domain | W3C validator |