| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gruiun | Structured version Visualization version GIF version | ||
| Description: If 𝐵(𝑥) is a family of elements of 𝑈 and the index set 𝐴 is an element of 𝑈, then the indexed union ∪ 𝑥 ∈ 𝐴𝐵 is also an element of 𝑈, where 𝑈 is a Grothendieck universe. (Contributed by Mario Carneiro, 9-Jun-2013.) |
| Ref | Expression |
|---|---|
| gruiun | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | fnmpt 6658 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
| 3 | 1 | rnmptss 7095 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑈) |
| 4 | df-f 6515 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑈 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 ∧ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑈)) | |
| 5 | 2, 3, 4 | sylanbrc 583 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑈) |
| 6 | gruurn 10751 | . . . . . 6 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑈) → ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑈) | |
| 7 | 6 | 3expia 1121 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → ((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑈 → ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑈)) |
| 8 | 5, 7 | syl5com 31 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑈)) |
| 9 | dfiun3g 5931 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
| 10 | 9 | eleq1d 2813 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → (∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 ↔ ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑈)) |
| 11 | 8, 10 | sylibrd 259 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈)) |
| 12 | 11 | com12 32 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈)) |
| 13 | 12 | 3impia 1117 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 ∪ cuni 4871 ∪ ciun 4955 ↦ cmpt 5188 ran crn 5639 Fn wfn 6506 ⟶wf 6507 Univcgru 10743 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-gru 10744 |
| This theorem is referenced by: gruuni 10753 gruun 10759 gruixp 10762 grur1a 10772 grur1cld 44221 grucollcld 44249 |
| Copyright terms: Public domain | W3C validator |