MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruiun Structured version   Visualization version   GIF version

Theorem gruiun 10690
Description: If 𝐵(𝑥) is a family of elements of 𝑈 and the index set 𝐴 is an element of 𝑈, then the indexed union 𝑥𝐴𝐵 is also an element of 𝑈, where 𝑈 is a Grothendieck universe. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruiun ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ∀𝑥𝐴 𝐵𝑈) → 𝑥𝐴 𝐵𝑈)
Distinct variable groups:   𝑥,𝑈   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem gruiun
StepHypRef Expression
1 eqid 2731 . . . . . . 7 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
21fnmpt 6621 . . . . . 6 (∀𝑥𝐴 𝐵𝑈 → (𝑥𝐴𝐵) Fn 𝐴)
31rnmptss 7056 . . . . . 6 (∀𝑥𝐴 𝐵𝑈 → ran (𝑥𝐴𝐵) ⊆ 𝑈)
4 df-f 6485 . . . . . 6 ((𝑥𝐴𝐵):𝐴𝑈 ↔ ((𝑥𝐴𝐵) Fn 𝐴 ∧ ran (𝑥𝐴𝐵) ⊆ 𝑈))
52, 3, 4sylanbrc 583 . . . . 5 (∀𝑥𝐴 𝐵𝑈 → (𝑥𝐴𝐵):𝐴𝑈)
6 gruurn 10689 . . . . . 6 ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ (𝑥𝐴𝐵):𝐴𝑈) → ran (𝑥𝐴𝐵) ∈ 𝑈)
763expia 1121 . . . . 5 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → ((𝑥𝐴𝐵):𝐴𝑈 ran (𝑥𝐴𝐵) ∈ 𝑈))
85, 7syl5com 31 . . . 4 (∀𝑥𝐴 𝐵𝑈 → ((𝑈 ∈ Univ ∧ 𝐴𝑈) → ran (𝑥𝐴𝐵) ∈ 𝑈))
9 dfiun3g 5906 . . . . 5 (∀𝑥𝐴 𝐵𝑈 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
109eleq1d 2816 . . . 4 (∀𝑥𝐴 𝐵𝑈 → ( 𝑥𝐴 𝐵𝑈 ran (𝑥𝐴𝐵) ∈ 𝑈))
118, 10sylibrd 259 . . 3 (∀𝑥𝐴 𝐵𝑈 → ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝑥𝐴 𝐵𝑈))
1211com12 32 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → (∀𝑥𝐴 𝐵𝑈 𝑥𝐴 𝐵𝑈))
13123impia 1117 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ∀𝑥𝐴 𝐵𝑈) → 𝑥𝐴 𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2111  wral 3047  wss 3897   cuni 4856   ciun 4939  cmpt 5170  ran crn 5615   Fn wfn 6476  wf 6477  Univcgru 10681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-gru 10682
This theorem is referenced by:  gruuni  10691  gruun  10697  gruixp  10700  grur1a  10710  grur1cld  44324  grucollcld  44352
  Copyright terms: Public domain W3C validator