MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruiun Structured version   Visualization version   GIF version

Theorem gruiun 10486
Description: If 𝐵(𝑥) is a family of elements of 𝑈 and the index set 𝐴 is an element of 𝑈, then the indexed union 𝑥𝐴𝐵 is also an element of 𝑈, where 𝑈 is a Grothendieck universe. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruiun ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ∀𝑥𝐴 𝐵𝑈) → 𝑥𝐴 𝐵𝑈)
Distinct variable groups:   𝑥,𝑈   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem gruiun
StepHypRef Expression
1 eqid 2738 . . . . . . 7 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
21fnmpt 6557 . . . . . 6 (∀𝑥𝐴 𝐵𝑈 → (𝑥𝐴𝐵) Fn 𝐴)
31rnmptss 6978 . . . . . 6 (∀𝑥𝐴 𝐵𝑈 → ran (𝑥𝐴𝐵) ⊆ 𝑈)
4 df-f 6422 . . . . . 6 ((𝑥𝐴𝐵):𝐴𝑈 ↔ ((𝑥𝐴𝐵) Fn 𝐴 ∧ ran (𝑥𝐴𝐵) ⊆ 𝑈))
52, 3, 4sylanbrc 582 . . . . 5 (∀𝑥𝐴 𝐵𝑈 → (𝑥𝐴𝐵):𝐴𝑈)
6 gruurn 10485 . . . . . 6 ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ (𝑥𝐴𝐵):𝐴𝑈) → ran (𝑥𝐴𝐵) ∈ 𝑈)
763expia 1119 . . . . 5 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → ((𝑥𝐴𝐵):𝐴𝑈 ran (𝑥𝐴𝐵) ∈ 𝑈))
85, 7syl5com 31 . . . 4 (∀𝑥𝐴 𝐵𝑈 → ((𝑈 ∈ Univ ∧ 𝐴𝑈) → ran (𝑥𝐴𝐵) ∈ 𝑈))
9 dfiun3g 5862 . . . . 5 (∀𝑥𝐴 𝐵𝑈 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
109eleq1d 2823 . . . 4 (∀𝑥𝐴 𝐵𝑈 → ( 𝑥𝐴 𝐵𝑈 ran (𝑥𝐴𝐵) ∈ 𝑈))
118, 10sylibrd 258 . . 3 (∀𝑥𝐴 𝐵𝑈 → ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝑥𝐴 𝐵𝑈))
1211com12 32 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → (∀𝑥𝐴 𝐵𝑈 𝑥𝐴 𝐵𝑈))
13123impia 1115 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ∀𝑥𝐴 𝐵𝑈) → 𝑥𝐴 𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wcel 2108  wral 3063  wss 3883   cuni 4836   ciun 4921  cmpt 5153  ran crn 5581   Fn wfn 6413  wf 6414  Univcgru 10477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-gru 10478
This theorem is referenced by:  gruuni  10487  gruun  10493  gruixp  10496  grur1a  10506  grur1cld  41739  grucollcld  41767
  Copyright terms: Public domain W3C validator