MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruiun Structured version   Visualization version   GIF version

Theorem gruiun 10210
Description: If 𝐵(𝑥) is a family of elements of 𝑈 and the index set 𝐴 is an element of 𝑈, then the indexed union 𝑥𝐴𝐵 is also an element of 𝑈, where 𝑈 is a Grothendieck universe. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruiun ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ∀𝑥𝐴 𝐵𝑈) → 𝑥𝐴 𝐵𝑈)
Distinct variable groups:   𝑥,𝑈   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem gruiun
StepHypRef Expression
1 eqid 2826 . . . . . . 7 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
21fnmpt 6485 . . . . . 6 (∀𝑥𝐴 𝐵𝑈 → (𝑥𝐴𝐵) Fn 𝐴)
31rnmptss 6882 . . . . . 6 (∀𝑥𝐴 𝐵𝑈 → ran (𝑥𝐴𝐵) ⊆ 𝑈)
4 df-f 6356 . . . . . 6 ((𝑥𝐴𝐵):𝐴𝑈 ↔ ((𝑥𝐴𝐵) Fn 𝐴 ∧ ran (𝑥𝐴𝐵) ⊆ 𝑈))
52, 3, 4sylanbrc 583 . . . . 5 (∀𝑥𝐴 𝐵𝑈 → (𝑥𝐴𝐵):𝐴𝑈)
6 gruurn 10209 . . . . . 6 ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ (𝑥𝐴𝐵):𝐴𝑈) → ran (𝑥𝐴𝐵) ∈ 𝑈)
763expia 1115 . . . . 5 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → ((𝑥𝐴𝐵):𝐴𝑈 ran (𝑥𝐴𝐵) ∈ 𝑈))
85, 7syl5com 31 . . . 4 (∀𝑥𝐴 𝐵𝑈 → ((𝑈 ∈ Univ ∧ 𝐴𝑈) → ran (𝑥𝐴𝐵) ∈ 𝑈))
9 dfiun3g 5834 . . . . 5 (∀𝑥𝐴 𝐵𝑈 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
109eleq1d 2902 . . . 4 (∀𝑥𝐴 𝐵𝑈 → ( 𝑥𝐴 𝐵𝑈 ran (𝑥𝐴𝐵) ∈ 𝑈))
118, 10sylibrd 260 . . 3 (∀𝑥𝐴 𝐵𝑈 → ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝑥𝐴 𝐵𝑈))
1211com12 32 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → (∀𝑥𝐴 𝐵𝑈 𝑥𝐴 𝐵𝑈))
13123impia 1111 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ∀𝑥𝐴 𝐵𝑈) → 𝑥𝐴 𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1081  wcel 2107  wral 3143  wss 3940   cuni 4837   ciun 4917  cmpt 5143  ran crn 5555   Fn wfn 6347  wf 6348  Univcgru 10201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-sbc 3777  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-fv 6360  df-ov 7151  df-oprab 7152  df-mpo 7153  df-map 8398  df-gru 10202
This theorem is referenced by:  gruuni  10211  gruun  10217  gruixp  10220  grur1a  10230  grur1cld  40433  grucollcld  40461
  Copyright terms: Public domain W3C validator