![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gruiun | Structured version Visualization version GIF version |
Description: If 𝐵(𝑥) is a family of elements of 𝑈 and the index set 𝐴 is an element of 𝑈, then the indexed union ∪ 𝑥 ∈ 𝐴𝐵 is also an element of 𝑈, where 𝑈 is a Grothendieck universe. (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
gruiun | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2797 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | fnmpt 6229 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
3 | 1 | rnmptss 6616 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑈) |
4 | df-f 6103 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑈 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 ∧ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑈)) | |
5 | 2, 3, 4 | sylanbrc 579 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑈) |
6 | gruurn 9906 | . . . . . 6 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑈) → ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑈) | |
7 | 6 | 3expia 1151 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → ((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑈 → ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑈)) |
8 | 5, 7 | syl5com 31 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑈)) |
9 | dfiun3g 5580 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
10 | 9 | eleq1d 2861 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → (∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 ↔ ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑈)) |
11 | 8, 10 | sylibrd 251 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈)) |
12 | 11 | com12 32 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈)) |
13 | 12 | 3impia 1146 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 ∈ wcel 2157 ∀wral 3087 ⊆ wss 3767 ∪ cuni 4626 ∪ ciun 4708 ↦ cmpt 4920 ran crn 5311 Fn wfn 6094 ⟶wf 6095 Univcgru 9898 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-sbc 3632 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-fv 6107 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-map 8095 df-gru 9899 |
This theorem is referenced by: gruuni 9908 gruun 9914 gruixp 9917 grur1a 9927 |
Copyright terms: Public domain | W3C validator |