Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gruiun | Structured version Visualization version GIF version |
Description: If 𝐵(𝑥) is a family of elements of 𝑈 and the index set 𝐴 is an element of 𝑈, then the indexed union ∪ 𝑥 ∈ 𝐴𝐵 is also an element of 𝑈, where 𝑈 is a Grothendieck universe. (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
gruiun | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | fnmpt 6573 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
3 | 1 | rnmptss 6996 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑈) |
4 | df-f 6437 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑈 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 ∧ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑈)) | |
5 | 2, 3, 4 | sylanbrc 583 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑈) |
6 | gruurn 10554 | . . . . . 6 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑈) → ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑈) | |
7 | 6 | 3expia 1120 | . . . . 5 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → ((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑈 → ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑈)) |
8 | 5, 7 | syl5com 31 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑈)) |
9 | dfiun3g 5873 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
10 | 9 | eleq1d 2823 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → (∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 ↔ ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑈)) |
11 | 8, 10 | sylibrd 258 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈)) |
12 | 11 | com12 32 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈)) |
13 | 12 | 3impia 1116 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 ∪ cuni 4839 ∪ ciun 4924 ↦ cmpt 5157 ran crn 5590 Fn wfn 6428 ⟶wf 6429 Univcgru 10546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-gru 10547 |
This theorem is referenced by: gruuni 10556 gruun 10562 gruixp 10565 grur1a 10575 grur1cld 41850 grucollcld 41878 |
Copyright terms: Public domain | W3C validator |