MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruiun Structured version   Visualization version   GIF version

Theorem gruiun 10223
Description: If 𝐵(𝑥) is a family of elements of 𝑈 and the index set 𝐴 is an element of 𝑈, then the indexed union 𝑥𝐴𝐵 is also an element of 𝑈, where 𝑈 is a Grothendieck universe. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruiun ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ∀𝑥𝐴 𝐵𝑈) → 𝑥𝐴 𝐵𝑈)
Distinct variable groups:   𝑥,𝑈   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem gruiun
StepHypRef Expression
1 eqid 2823 . . . . . . 7 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
21fnmpt 6490 . . . . . 6 (∀𝑥𝐴 𝐵𝑈 → (𝑥𝐴𝐵) Fn 𝐴)
31rnmptss 6888 . . . . . 6 (∀𝑥𝐴 𝐵𝑈 → ran (𝑥𝐴𝐵) ⊆ 𝑈)
4 df-f 6361 . . . . . 6 ((𝑥𝐴𝐵):𝐴𝑈 ↔ ((𝑥𝐴𝐵) Fn 𝐴 ∧ ran (𝑥𝐴𝐵) ⊆ 𝑈))
52, 3, 4sylanbrc 585 . . . . 5 (∀𝑥𝐴 𝐵𝑈 → (𝑥𝐴𝐵):𝐴𝑈)
6 gruurn 10222 . . . . . 6 ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ (𝑥𝐴𝐵):𝐴𝑈) → ran (𝑥𝐴𝐵) ∈ 𝑈)
763expia 1117 . . . . 5 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → ((𝑥𝐴𝐵):𝐴𝑈 ran (𝑥𝐴𝐵) ∈ 𝑈))
85, 7syl5com 31 . . . 4 (∀𝑥𝐴 𝐵𝑈 → ((𝑈 ∈ Univ ∧ 𝐴𝑈) → ran (𝑥𝐴𝐵) ∈ 𝑈))
9 dfiun3g 5837 . . . . 5 (∀𝑥𝐴 𝐵𝑈 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
109eleq1d 2899 . . . 4 (∀𝑥𝐴 𝐵𝑈 → ( 𝑥𝐴 𝐵𝑈 ran (𝑥𝐴𝐵) ∈ 𝑈))
118, 10sylibrd 261 . . 3 (∀𝑥𝐴 𝐵𝑈 → ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝑥𝐴 𝐵𝑈))
1211com12 32 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → (∀𝑥𝐴 𝐵𝑈 𝑥𝐴 𝐵𝑈))
13123impia 1113 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ∀𝑥𝐴 𝐵𝑈) → 𝑥𝐴 𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083  wcel 2114  wral 3140  wss 3938   cuni 4840   ciun 4921  cmpt 5148  ran crn 5558   Fn wfn 6352  wf 6353  Univcgru 10214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-map 8410  df-gru 10215
This theorem is referenced by:  gruuni  10224  gruun  10230  gruixp  10233  grur1a  10243  grur1cld  40575  grucollcld  40603
  Copyright terms: Public domain W3C validator