MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgiun Structured version   Visualization version   GIF version

Theorem tgiun 23007
Description: The indexed union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgiun ((𝐵𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 𝐶 ∈ (topGen‘𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem tgiun
StepHypRef Expression
1 dfiun3g 5990 . . 3 (∀𝑥𝐴 𝐶𝐵 𝑥𝐴 𝐶 = ran (𝑥𝐴𝐶))
21adantl 481 . 2 ((𝐵𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 𝐶 = ran (𝑥𝐴𝐶))
3 eqid 2740 . . . 4 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
43rnmptss 7157 . . 3 (∀𝑥𝐴 𝐶𝐵 → ran (𝑥𝐴𝐶) ⊆ 𝐵)
5 eltg3i 22989 . . 3 ((𝐵𝑉 ∧ ran (𝑥𝐴𝐶) ⊆ 𝐵) → ran (𝑥𝐴𝐶) ∈ (topGen‘𝐵))
64, 5sylan2 592 . 2 ((𝐵𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → ran (𝑥𝐴𝐶) ∈ (topGen‘𝐵))
72, 6eqeltrd 2844 1 ((𝐵𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 𝐶 ∈ (topGen‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  wss 3976   cuni 4931   ciun 5015  cmpt 5249  ran crn 5701  cfv 6573  topGenctg 17497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-topgen 17503
This theorem is referenced by:  txbasval  23635
  Copyright terms: Public domain W3C validator