MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgiun Structured version   Visualization version   GIF version

Theorem tgiun 22882
Description: The indexed union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgiun ((𝐵𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 𝐶 ∈ (topGen‘𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem tgiun
StepHypRef Expression
1 dfiun3g 5913 . . 3 (∀𝑥𝐴 𝐶𝐵 𝑥𝐴 𝐶 = ran (𝑥𝐴𝐶))
21adantl 481 . 2 ((𝐵𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 𝐶 = ran (𝑥𝐴𝐶))
3 eqid 2729 . . . 4 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
43rnmptss 7061 . . 3 (∀𝑥𝐴 𝐶𝐵 → ran (𝑥𝐴𝐶) ⊆ 𝐵)
5 eltg3i 22864 . . 3 ((𝐵𝑉 ∧ ran (𝑥𝐴𝐶) ⊆ 𝐵) → ran (𝑥𝐴𝐶) ∈ (topGen‘𝐵))
64, 5sylan2 593 . 2 ((𝐵𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → ran (𝑥𝐴𝐶) ∈ (topGen‘𝐵))
72, 6eqeltrd 2828 1 ((𝐵𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 𝐶 ∈ (topGen‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3905   cuni 4861   ciun 4944  cmpt 5176  ran crn 5624  cfv 6486  topGenctg 17359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-topgen 17365
This theorem is referenced by:  txbasval  23509
  Copyright terms: Public domain W3C validator