MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgiun Structured version   Visualization version   GIF version

Theorem tgiun 22702
Description: The indexed union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgiun ((𝐡 ∈ 𝑉 ∧ βˆ€π‘₯ ∈ 𝐴 𝐢 ∈ 𝐡) β†’ βˆͺ π‘₯ ∈ 𝐴 𝐢 ∈ (topGenβ€˜π΅))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐡   π‘₯,𝑉
Allowed substitution hint:   𝐢(π‘₯)

Proof of Theorem tgiun
StepHypRef Expression
1 dfiun3g 5963 . . 3 (βˆ€π‘₯ ∈ 𝐴 𝐢 ∈ 𝐡 β†’ βˆͺ π‘₯ ∈ 𝐴 𝐢 = βˆͺ ran (π‘₯ ∈ 𝐴 ↦ 𝐢))
21adantl 482 . 2 ((𝐡 ∈ 𝑉 ∧ βˆ€π‘₯ ∈ 𝐴 𝐢 ∈ 𝐡) β†’ βˆͺ π‘₯ ∈ 𝐴 𝐢 = βˆͺ ran (π‘₯ ∈ 𝐴 ↦ 𝐢))
3 eqid 2732 . . . 4 (π‘₯ ∈ 𝐴 ↦ 𝐢) = (π‘₯ ∈ 𝐴 ↦ 𝐢)
43rnmptss 7124 . . 3 (βˆ€π‘₯ ∈ 𝐴 𝐢 ∈ 𝐡 β†’ ran (π‘₯ ∈ 𝐴 ↦ 𝐢) βŠ† 𝐡)
5 eltg3i 22684 . . 3 ((𝐡 ∈ 𝑉 ∧ ran (π‘₯ ∈ 𝐴 ↦ 𝐢) βŠ† 𝐡) β†’ βˆͺ ran (π‘₯ ∈ 𝐴 ↦ 𝐢) ∈ (topGenβ€˜π΅))
64, 5sylan2 593 . 2 ((𝐡 ∈ 𝑉 ∧ βˆ€π‘₯ ∈ 𝐴 𝐢 ∈ 𝐡) β†’ βˆͺ ran (π‘₯ ∈ 𝐴 ↦ 𝐢) ∈ (topGenβ€˜π΅))
72, 6eqeltrd 2833 1 ((𝐡 ∈ 𝑉 ∧ βˆ€π‘₯ ∈ 𝐴 𝐢 ∈ 𝐡) β†’ βˆͺ π‘₯ ∈ 𝐴 𝐢 ∈ (topGenβ€˜π΅))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061   βŠ† wss 3948  βˆͺ cuni 4908  βˆͺ ciun 4997   ↦ cmpt 5231  ran crn 5677  β€˜cfv 6543  topGenctg 17387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-topgen 17393
This theorem is referenced by:  txbasval  23330
  Copyright terms: Public domain W3C validator