| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgiun | Structured version Visualization version GIF version | ||
| Description: The indexed union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| tgiun | ⊢ ((𝐵 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐶 ∈ (topGen‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiun3g 5911 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐶)) |
| 3 | eqid 2733 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
| 4 | 3 | rnmptss 7062 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → ran (𝑥 ∈ 𝐴 ↦ 𝐶) ⊆ 𝐵) |
| 5 | eltg3i 22877 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ ran (𝑥 ∈ 𝐴 ↦ 𝐶) ⊆ 𝐵) → ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ (topGen‘𝐵)) | |
| 6 | 4, 5 | sylan2 593 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵) → ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ (topGen‘𝐵)) |
| 7 | 2, 6 | eqeltrd 2833 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐶 ∈ (topGen‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ⊆ wss 3898 ∪ cuni 4858 ∪ ciun 4941 ↦ cmpt 5174 ran crn 5620 ‘cfv 6486 topGenctg 17343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-topgen 17349 |
| This theorem is referenced by: txbasval 23522 |
| Copyright terms: Public domain | W3C validator |