MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgiun Structured version   Visualization version   GIF version

Theorem tgiun 22037
Description: The indexed union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgiun ((𝐵𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 𝐶 ∈ (topGen‘𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem tgiun
StepHypRef Expression
1 dfiun3g 5862 . . 3 (∀𝑥𝐴 𝐶𝐵 𝑥𝐴 𝐶 = ran (𝑥𝐴𝐶))
21adantl 481 . 2 ((𝐵𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 𝐶 = ran (𝑥𝐴𝐶))
3 eqid 2738 . . . 4 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
43rnmptss 6978 . . 3 (∀𝑥𝐴 𝐶𝐵 → ran (𝑥𝐴𝐶) ⊆ 𝐵)
5 eltg3i 22019 . . 3 ((𝐵𝑉 ∧ ran (𝑥𝐴𝐶) ⊆ 𝐵) → ran (𝑥𝐴𝐶) ∈ (topGen‘𝐵))
64, 5sylan2 592 . 2 ((𝐵𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → ran (𝑥𝐴𝐶) ∈ (topGen‘𝐵))
72, 6eqeltrd 2839 1 ((𝐵𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 𝐶 ∈ (topGen‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wss 3883   cuni 4836   ciun 4921  cmpt 5153  ran crn 5581  cfv 6418  topGenctg 17065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-topgen 17071
This theorem is referenced by:  txbasval  22665
  Copyright terms: Public domain W3C validator