Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfnbgrss2 Structured version   Visualization version   GIF version

Theorem dfnbgrss2 47731
Description: Subset chain for different kinds of neighborhoods of a vertex. (Contributed by AV, 16-May-2025.)
Hypotheses
Ref Expression
dfvopnbgr2.v 𝑉 = (Vtx‘𝐺)
dfvopnbgr2.e 𝐸 = (Edg‘𝐺)
dfvopnbgr2.u 𝑈 = {𝑛𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒𝐸 (𝑁 = 𝑛𝑒 = {𝑁}))}
dfsclnbgr6.s 𝑆 = {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}
Assertion
Ref Expression
dfnbgrss2 (𝑁𝑉 → ((𝐺 NeighbVtx 𝑁) ⊆ 𝑈𝑈𝑆𝑆 ⊆ (𝐺 ClNeighbVtx 𝑁)))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁,𝑛   𝑒,𝑉,𝑛   𝑛,𝐸   𝑛,𝐺
Allowed substitution hints:   𝑆(𝑒,𝑛)   𝑈(𝑒,𝑛)

Proof of Theorem dfnbgrss2
StepHypRef Expression
1 dfvopnbgr2.v . . . 4 𝑉 = (Vtx‘𝐺)
2 dfvopnbgr2.e . . . 4 𝐸 = (Edg‘𝐺)
3 dfvopnbgr2.u . . . 4 𝑈 = {𝑛𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒𝐸 (𝑁 = 𝑛𝑒 = {𝑁}))}
41, 2, 3dfnbgr6 47729 . . 3 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = (𝑈 ∖ {𝑁}))
5 difss 4159 . . 3 (𝑈 ∖ {𝑁}) ⊆ 𝑈
64, 5eqsstrdi 4063 . 2 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) ⊆ 𝑈)
7 ssun1 4201 . . 3 𝑈 ⊆ (𝑈 ∪ {𝑛 ∈ {𝑁} ∣ ∃𝑒𝐸 𝑛𝑒})
8 dfsclnbgr6.s . . . 4 𝑆 = {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}
91, 2, 3, 8dfsclnbgr6 47730 . . 3 (𝑁𝑉𝑆 = (𝑈 ∪ {𝑛 ∈ {𝑁} ∣ ∃𝑒𝐸 𝑛𝑒}))
107, 9sseqtrrid 4062 . 2 (𝑁𝑉𝑈𝑆)
111, 8, 2dfnbgrss 47724 . . 3 (𝑁𝑉 → ((𝐺 NeighbVtx 𝑁) ⊆ 𝑆𝑆 ⊆ (𝐺 ClNeighbVtx 𝑁)))
1211simprd 495 . 2 (𝑁𝑉𝑆 ⊆ (𝐺 ClNeighbVtx 𝑁))
136, 10, 123jca 1128 1 (𝑁𝑉 → ((𝐺 NeighbVtx 𝑁) ⊆ 𝑈𝑈𝑆𝑆 ⊆ (𝐺 ClNeighbVtx 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  {crab 3443  cdif 3973  cun 3974  wss 3976  {csn 4648  {cpr 4650  cfv 6573  (class class class)co 7448  Vtxcvtx 29031  Edgcedg 29082   NeighbVtx cnbgr 29367   ClNeighbVtx cclnbgr 47692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-nbgr 29368  df-clnbgr 47693
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator