| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfnbgrss2 | Structured version Visualization version GIF version | ||
| Description: Subset chain for different kinds of neighborhoods of a vertex. (Contributed by AV, 16-May-2025.) |
| Ref | Expression |
|---|---|
| dfvopnbgr2.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| dfvopnbgr2.e | ⊢ 𝐸 = (Edg‘𝐺) |
| dfvopnbgr2.u | ⊢ 𝑈 = {𝑛 ∈ 𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁}))} |
| dfsclnbgr6.s | ⊢ 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} |
| Ref | Expression |
|---|---|
| dfnbgrss2 | ⊢ (𝑁 ∈ 𝑉 → ((𝐺 NeighbVtx 𝑁) ⊆ 𝑈 ∧ 𝑈 ⊆ 𝑆 ∧ 𝑆 ⊆ (𝐺 ClNeighbVtx 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfvopnbgr2.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | dfvopnbgr2.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
| 3 | dfvopnbgr2.u | . . . 4 ⊢ 𝑈 = {𝑛 ∈ 𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁}))} | |
| 4 | 1, 2, 3 | dfnbgr6 47830 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (𝐺 NeighbVtx 𝑁) = (𝑈 ∖ {𝑁})) |
| 5 | difss 4095 | . . 3 ⊢ (𝑈 ∖ {𝑁}) ⊆ 𝑈 | |
| 6 | 4, 5 | eqsstrdi 3988 | . 2 ⊢ (𝑁 ∈ 𝑉 → (𝐺 NeighbVtx 𝑁) ⊆ 𝑈) |
| 7 | ssun1 4137 | . . 3 ⊢ 𝑈 ⊆ (𝑈 ∪ {𝑛 ∈ {𝑁} ∣ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒}) | |
| 8 | dfsclnbgr6.s | . . . 4 ⊢ 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} | |
| 9 | 1, 2, 3, 8 | dfsclnbgr6 47831 | . . 3 ⊢ (𝑁 ∈ 𝑉 → 𝑆 = (𝑈 ∪ {𝑛 ∈ {𝑁} ∣ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒})) |
| 10 | 7, 9 | sseqtrrid 3987 | . 2 ⊢ (𝑁 ∈ 𝑉 → 𝑈 ⊆ 𝑆) |
| 11 | 1, 8, 2 | dfnbgrss 47825 | . . 3 ⊢ (𝑁 ∈ 𝑉 → ((𝐺 NeighbVtx 𝑁) ⊆ 𝑆 ∧ 𝑆 ⊆ (𝐺 ClNeighbVtx 𝑁))) |
| 12 | 11 | simprd 495 | . 2 ⊢ (𝑁 ∈ 𝑉 → 𝑆 ⊆ (𝐺 ClNeighbVtx 𝑁)) |
| 13 | 6, 10, 12 | 3jca 1128 | 1 ⊢ (𝑁 ∈ 𝑉 → ((𝐺 NeighbVtx 𝑁) ⊆ 𝑈 ∧ 𝑈 ⊆ 𝑆 ∧ 𝑆 ⊆ (𝐺 ClNeighbVtx 𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3402 ∖ cdif 3908 ∪ cun 3909 ⊆ wss 3911 {csn 4585 {cpr 4587 ‘cfv 6499 (class class class)co 7369 Vtxcvtx 28899 Edgcedg 28950 NeighbVtx cnbgr 29235 ClNeighbVtx cclnbgr 47792 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-nbgr 29236 df-clnbgr 47793 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |