Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfnbgrss2 Structured version   Visualization version   GIF version

Theorem dfnbgrss2 47898
Description: Subset chain for different kinds of neighborhoods of a vertex. (Contributed by AV, 16-May-2025.)
Hypotheses
Ref Expression
dfvopnbgr2.v 𝑉 = (Vtx‘𝐺)
dfvopnbgr2.e 𝐸 = (Edg‘𝐺)
dfvopnbgr2.u 𝑈 = {𝑛𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒𝐸 (𝑁 = 𝑛𝑒 = {𝑁}))}
dfsclnbgr6.s 𝑆 = {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}
Assertion
Ref Expression
dfnbgrss2 (𝑁𝑉 → ((𝐺 NeighbVtx 𝑁) ⊆ 𝑈𝑈𝑆𝑆 ⊆ (𝐺 ClNeighbVtx 𝑁)))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁,𝑛   𝑒,𝑉,𝑛   𝑛,𝐸   𝑛,𝐺
Allowed substitution hints:   𝑆(𝑒,𝑛)   𝑈(𝑒,𝑛)

Proof of Theorem dfnbgrss2
StepHypRef Expression
1 dfvopnbgr2.v . . . 4 𝑉 = (Vtx‘𝐺)
2 dfvopnbgr2.e . . . 4 𝐸 = (Edg‘𝐺)
3 dfvopnbgr2.u . . . 4 𝑈 = {𝑛𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒𝐸 (𝑁 = 𝑛𝑒 = {𝑁}))}
41, 2, 3dfnbgr6 47896 . . 3 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = (𝑈 ∖ {𝑁}))
5 difss 4083 . . 3 (𝑈 ∖ {𝑁}) ⊆ 𝑈
64, 5eqsstrdi 3974 . 2 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) ⊆ 𝑈)
7 ssun1 4125 . . 3 𝑈 ⊆ (𝑈 ∪ {𝑛 ∈ {𝑁} ∣ ∃𝑒𝐸 𝑛𝑒})
8 dfsclnbgr6.s . . . 4 𝑆 = {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}
91, 2, 3, 8dfsclnbgr6 47897 . . 3 (𝑁𝑉𝑆 = (𝑈 ∪ {𝑛 ∈ {𝑁} ∣ ∃𝑒𝐸 𝑛𝑒}))
107, 9sseqtrrid 3973 . 2 (𝑁𝑉𝑈𝑆)
111, 8, 2dfnbgrss 47891 . . 3 (𝑁𝑉 → ((𝐺 NeighbVtx 𝑁) ⊆ 𝑆𝑆 ⊆ (𝐺 ClNeighbVtx 𝑁)))
1211simprd 495 . 2 (𝑁𝑉𝑆 ⊆ (𝐺 ClNeighbVtx 𝑁))
136, 10, 123jca 1128 1 (𝑁𝑉 → ((𝐺 NeighbVtx 𝑁) ⊆ 𝑈𝑈𝑆𝑆 ⊆ (𝐺 ClNeighbVtx 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  {crab 3395  cdif 3894  cun 3895  wss 3897  {csn 4573  {cpr 4575  cfv 6481  (class class class)co 7346  Vtxcvtx 28974  Edgcedg 29025   NeighbVtx cnbgr 29310   ClNeighbVtx cclnbgr 47857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-nbgr 29311  df-clnbgr 47858
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator