Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfsuccf2 Structured version   Visualization version   GIF version

Theorem dfsuccf2 35985
Description: Alternate definition of Scott Fenton's version of Succ, cf. df-sucmap 38485. (Contributed by Peter Mazsa, 6-Jan-2026.)
Assertion
Ref Expression
dfsuccf2 Succ = {⟨𝑚, 𝑛⟩ ∣ suc 𝑚 = 𝑛}
Distinct variable group:   𝑚,𝑛

Proof of Theorem dfsuccf2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-succf 35914 . 2 Succ = (Cup ∘ ( I ⊗ Singleton))
2 df-co 5623 . 2 (Cup ∘ ( I ⊗ Singleton)) = {⟨𝑚, 𝑛⟩ ∣ ∃𝑥(𝑚( I ⊗ Singleton)𝑥𝑥Cup𝑛)}
3 vex 3440 . . . . 5 𝑚 ∈ V
4 vex 3440 . . . . 5 𝑛 ∈ V
53, 4lemsuccf 35983 . . . 4 (∃𝑥(𝑚( I ⊗ Singleton)𝑥𝑥Cup𝑛) ↔ 𝑛 = suc 𝑚)
6 eqcom 2738 . . . 4 (𝑛 = suc 𝑚 ↔ suc 𝑚 = 𝑛)
75, 6bitri 275 . . 3 (∃𝑥(𝑚( I ⊗ Singleton)𝑥𝑥Cup𝑛) ↔ suc 𝑚 = 𝑛)
87opabbii 5156 . 2 {⟨𝑚, 𝑛⟩ ∣ ∃𝑥(𝑚( I ⊗ Singleton)𝑥𝑥Cup𝑛)} = {⟨𝑚, 𝑛⟩ ∣ suc 𝑚 = 𝑛}
91, 2, 83eqtri 2758 1 Succ = {⟨𝑚, 𝑛⟩ ∣ suc 𝑚 = 𝑛}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wex 1780   class class class wbr 5089  {copab 5151   I cid 5508  ccom 5618  suc csuc 6308  ctxp 35872  Singletoncsingle 35880  Cupccup 35888  Succcsuccf 35890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-symdif 4200  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-eprel 5514  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-1st 7921  df-2nd 7922  df-txp 35896  df-singleton 35904  df-cup 35911  df-succf 35914
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator