![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscld | Structured version Visualization version GIF version |
Description: The predicate "the class 𝑆 is a closed set". (Contributed by NM, 2-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
iscld | ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscld.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | cldval 23052 | . . . 4 ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ∈ 𝐽}) |
3 | 2 | eleq2d 2830 | . . 3 ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ 𝑆 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ∈ 𝐽})) |
4 | difeq2 4143 | . . . . 5 ⊢ (𝑥 = 𝑆 → (𝑋 ∖ 𝑥) = (𝑋 ∖ 𝑆)) | |
5 | 4 | eleq1d 2829 | . . . 4 ⊢ (𝑥 = 𝑆 → ((𝑋 ∖ 𝑥) ∈ 𝐽 ↔ (𝑋 ∖ 𝑆) ∈ 𝐽)) |
6 | 5 | elrab 3708 | . . 3 ⊢ (𝑆 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ∈ 𝐽} ↔ (𝑆 ∈ 𝒫 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽)) |
7 | 3, 6 | bitrdi 287 | . 2 ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ∈ 𝒫 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) |
8 | 1 | topopn 22933 | . . . 4 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
9 | elpw2g 5351 | . . . 4 ⊢ (𝑋 ∈ 𝐽 → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝐽 ∈ Top → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) |
11 | 10 | anbi1d 630 | . 2 ⊢ (𝐽 ∈ Top → ((𝑆 ∈ 𝒫 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) |
12 | 7, 11 | bitrd 279 | 1 ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 ∖ cdif 3973 ⊆ wss 3976 𝒫 cpw 4622 ∪ cuni 4931 ‘cfv 6573 Topctop 22920 Clsdccld 23045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-top 22921 df-cld 23048 |
This theorem is referenced by: iscld2 23057 cldss 23058 cldopn 23060 topcld 23064 discld 23118 indiscld 23120 restcld 23201 ordtcld1 23226 ordtcld2 23227 hauscmp 23436 txcld 23632 ptcld 23642 qtopcld 23742 opnsubg 24137 sszcld 24858 ist0cld 33779 stoweidlem57 45978 |
Copyright terms: Public domain | W3C validator |