MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscld Structured version   Visualization version   GIF version

Theorem iscld 22531
Description: The predicate "the class 𝑆 is a closed set". (Contributed by NM, 2-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
iscld (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))

Proof of Theorem iscld
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iscld.1 . . . . 5 𝑋 = 𝐽
21cldval 22527 . . . 4 (𝐽 ∈ Top → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽})
32eleq2d 2820 . . 3 (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ 𝑆 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽}))
4 difeq2 4117 . . . . 5 (𝑥 = 𝑆 → (𝑋𝑥) = (𝑋𝑆))
54eleq1d 2819 . . . 4 (𝑥 = 𝑆 → ((𝑋𝑥) ∈ 𝐽 ↔ (𝑋𝑆) ∈ 𝐽))
65elrab 3684 . . 3 (𝑆 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽} ↔ (𝑆 ∈ 𝒫 𝑋 ∧ (𝑋𝑆) ∈ 𝐽))
73, 6bitrdi 287 . 2 (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ∈ 𝒫 𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))
81topopn 22408 . . . 4 (𝐽 ∈ Top → 𝑋𝐽)
9 elpw2g 5345 . . . 4 (𝑋𝐽 → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
108, 9syl 17 . . 3 (𝐽 ∈ Top → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1110anbi1d 631 . 2 (𝐽 ∈ Top → ((𝑆 ∈ 𝒫 𝑋 ∧ (𝑋𝑆) ∈ 𝐽) ↔ (𝑆𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))
127, 11bitrd 279 1 (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  {crab 3433  cdif 3946  wss 3949  𝒫 cpw 4603   cuni 4909  cfv 6544  Topctop 22395  Clsdccld 22520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-top 22396  df-cld 22523
This theorem is referenced by:  iscld2  22532  cldss  22533  cldopn  22535  topcld  22539  discld  22593  indiscld  22595  restcld  22676  ordtcld1  22701  ordtcld2  22702  hauscmp  22911  txcld  23107  ptcld  23117  qtopcld  23217  opnsubg  23612  sszcld  24333  ist0cld  32813  stoweidlem57  44773
  Copyright terms: Public domain W3C validator