MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscld Structured version   Visualization version   GIF version

Theorem iscld 21635
Description: The predicate "the class 𝑆 is a closed set". (Contributed by NM, 2-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
iscld (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))

Proof of Theorem iscld
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iscld.1 . . . . 5 𝑋 = 𝐽
21cldval 21631 . . . 4 (𝐽 ∈ Top → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽})
32eleq2d 2898 . . 3 (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ 𝑆 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽}))
4 difeq2 4093 . . . . 5 (𝑥 = 𝑆 → (𝑋𝑥) = (𝑋𝑆))
54eleq1d 2897 . . . 4 (𝑥 = 𝑆 → ((𝑋𝑥) ∈ 𝐽 ↔ (𝑋𝑆) ∈ 𝐽))
65elrab 3680 . . 3 (𝑆 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽} ↔ (𝑆 ∈ 𝒫 𝑋 ∧ (𝑋𝑆) ∈ 𝐽))
73, 6syl6bb 289 . 2 (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ∈ 𝒫 𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))
81topopn 21514 . . . 4 (𝐽 ∈ Top → 𝑋𝐽)
9 elpw2g 5247 . . . 4 (𝑋𝐽 → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
108, 9syl 17 . . 3 (𝐽 ∈ Top → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1110anbi1d 631 . 2 (𝐽 ∈ Top → ((𝑆 ∈ 𝒫 𝑋 ∧ (𝑋𝑆) ∈ 𝐽) ↔ (𝑆𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))
127, 11bitrd 281 1 (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  {crab 3142  cdif 3933  wss 3936  𝒫 cpw 4539   cuni 4838  cfv 6355  Topctop 21501  Clsdccld 21624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-iota 6314  df-fun 6357  df-fv 6363  df-top 21502  df-cld 21627
This theorem is referenced by:  iscld2  21636  cldss  21637  cldopn  21639  topcld  21643  discld  21697  indiscld  21699  restcld  21780  ordtcld1  21805  ordtcld2  21806  hauscmp  22015  txcld  22211  ptcld  22221  qtopcld  22321  opnsubg  22716  sszcld  23425  stoweidlem57  42362
  Copyright terms: Public domain W3C validator