MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divcl Structured version   Visualization version   GIF version

Theorem divcl 11779
Description: Closure law for division. (Contributed by NM, 21-Jul-2001.) (Proof shortened by Mario Carneiro, 17-Feb-2014.)
Assertion
Ref Expression
divcl ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℂ)

Proof of Theorem divcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 divval 11775 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
2 receu 11759 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
3 riotacl 7320 . . 3 (∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴 → (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴) ∈ ℂ)
42, 3syl 17 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴) ∈ ℂ)
51, 4eqeltrd 2831 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  wne 2928  ∃!wreu 3344  crio 7302  (class class class)co 7346  cc 11001  0cc0 11003   · cmul 11008   / cdiv 11771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772
This theorem is referenced by:  reccl  11780  divcan2  11781  divcan1  11782  div23  11792  div12  11795  divmulasscom  11797  div11  11801  div11OLD  11802  divsubdir  11812  divmuldiv  11818  divdivdiv  11819  divcan5  11820  divmuleq  11823  divcan6  11825  divdiv32  11826  dmdcan  11828  ddcan  11832  divsubdiv  11834  div2neg  11841  divclzi  11853  divcld  11894  nndivtr  12169  halfcl  12344  sqdiv  14025  cjdiv  15068  absdiv  15199  sinf  16030  efi4p  16043  dvrec  25884  efeq1  26462  efif1olem4  26479  logbgcd1irr  26729  axcontlem4  28943  dipcl  30687  spansncol  31543  subfaclim  35220  sinccvglem  35704  nndivsub  36490  ftc1anclem6  37737  3rdpwhole  42324  lhe4.4ex1a  44361
  Copyright terms: Public domain W3C validator