HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjeu Structured version   Visualization version   GIF version

Theorem adjeu 30152
Description: Elementhood in the domain of the adjoint function. (Contributed by Mario Carneiro, 11-Sep-2015.) (Revised by Mario Carneiro, 24-Dec-2016.) (New usage is discouraged.)
Assertion
Ref Expression
adjeu (𝑇: ℋ⟶ ℋ → (𝑇 ∈ dom adj ↔ ∃!𝑢 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)))
Distinct variable group:   𝑥,𝑢,𝑦,𝑇

Proof of Theorem adjeu
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 ax-hilex 29262 . . . 4 ℋ ∈ V
2 fex2 7754 . . . 4 ((𝑇: ℋ⟶ ℋ ∧ ℋ ∈ V ∧ ℋ ∈ V) → 𝑇 ∈ V)
31, 1, 2mp3an23 1451 . . 3 (𝑇: ℋ⟶ ℋ → 𝑇 ∈ V)
4 feq1 6565 . . . . . . . . 9 (𝑡 = 𝑇 → (𝑡: ℋ⟶ ℋ ↔ 𝑇: ℋ⟶ ℋ))
5 fveq1 6755 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (𝑡𝑦) = (𝑇𝑦))
65oveq2d 7271 . . . . . . . . . . 11 (𝑡 = 𝑇 → (𝑥 ·ih (𝑡𝑦)) = (𝑥 ·ih (𝑇𝑦)))
76eqeq1d 2740 . . . . . . . . . 10 (𝑡 = 𝑇 → ((𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦) ↔ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)))
872ralbidv 3122 . . . . . . . . 9 (𝑡 = 𝑇 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)))
94, 83anbi13d 1436 . . . . . . . 8 (𝑡 = 𝑇 → ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦)) ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦))))
10 3anass 1093 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)) ↔ (𝑇: ℋ⟶ ℋ ∧ (𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦))))
119, 10bitrdi 286 . . . . . . 7 (𝑡 = 𝑇 → ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦)) ↔ (𝑇: ℋ⟶ ℋ ∧ (𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)))))
1211exbidv 1925 . . . . . 6 (𝑡 = 𝑇 → (∃𝑢(𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦)) ↔ ∃𝑢(𝑇: ℋ⟶ ℋ ∧ (𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)))))
13 19.42v 1958 . . . . . 6 (∃𝑢(𝑇: ℋ⟶ ℋ ∧ (𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦))) ↔ (𝑇: ℋ⟶ ℋ ∧ ∃𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦))))
1412, 13bitrdi 286 . . . . 5 (𝑡 = 𝑇 → (∃𝑢(𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦)) ↔ (𝑇: ℋ⟶ ℋ ∧ ∃𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)))))
15 dfadj2 30148 . . . . . . 7 adj = {⟨𝑡, 𝑢⟩ ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦))}
1615dmeqi 5802 . . . . . 6 dom adj = dom {⟨𝑡, 𝑢⟩ ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦))}
17 dmopab 5813 . . . . . 6 dom {⟨𝑡, 𝑢⟩ ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦))} = {𝑡 ∣ ∃𝑢(𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦))}
1816, 17eqtri 2766 . . . . 5 dom adj = {𝑡 ∣ ∃𝑢(𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦))}
1914, 18elab2g 3604 . . . 4 (𝑇 ∈ V → (𝑇 ∈ dom adj ↔ (𝑇: ℋ⟶ ℋ ∧ ∃𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)))))
2019baibd 539 . . 3 ((𝑇 ∈ V ∧ 𝑇: ℋ⟶ ℋ) → (𝑇 ∈ dom adj ↔ ∃𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦))))
213, 20mpancom 684 . 2 (𝑇: ℋ⟶ ℋ → (𝑇 ∈ dom adj ↔ ∃𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦))))
22 df-reu 3070 . . 3 (∃!𝑢 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦) ↔ ∃!𝑢(𝑢 ∈ ( ℋ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)))
231, 1elmap 8617 . . . . 5 (𝑢 ∈ ( ℋ ↑m ℋ) ↔ 𝑢: ℋ⟶ ℋ)
2423anbi1i 623 . . . 4 ((𝑢 ∈ ( ℋ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)) ↔ (𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)))
2524eubii 2585 . . 3 (∃!𝑢(𝑢 ∈ ( ℋ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)) ↔ ∃!𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)))
26 adjmo 30095 . . . 4 ∃*𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦))
27 df-eu 2569 . . . 4 (∃!𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)) ↔ (∃𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)) ∧ ∃*𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦))))
2826, 27mpbiran2 706 . . 3 (∃!𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)) ↔ ∃𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)))
2922, 25, 283bitri 296 . 2 (∃!𝑢 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦) ↔ ∃𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)))
3021, 29bitr4di 288 1 (𝑇: ℋ⟶ ℋ → (𝑇 ∈ dom adj ↔ ∃!𝑢 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  ∃*wmo 2538  ∃!weu 2568  {cab 2715  wral 3063  ∃!wreu 3065  Vcvv 3422  {copab 5132  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  chba 29182   ·ih csp 29185  adjcado 29218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-hilex 29262  ax-hfvadd 29263  ax-hvcom 29264  ax-hvass 29265  ax-hv0cl 29266  ax-hvaddid 29267  ax-hfvmul 29268  ax-hvmulid 29269  ax-hvdistr2 29272  ax-hvmul0 29273  ax-hfi 29342  ax-his1 29345  ax-his2 29346  ax-his3 29347  ax-his4 29348
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-2 11966  df-cj 14738  df-re 14739  df-im 14740  df-hvsub 29234  df-adjh 30112
This theorem is referenced by:  adjbdln  30346
  Copyright terms: Public domain W3C validator