MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  shftdm Structured version   Visualization version   GIF version

Theorem shftdm 15095
Description: Domain of a relation shifted by 𝐴. The set on the right is more commonly notated as (dom 𝐹 + 𝐴) (meaning add 𝐴 to every element of dom 𝐹). (Contributed by Mario Carneiro, 3-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
shftdm (𝐴 ∈ ℂ → dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ dom 𝐹})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem shftdm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 shftfval.1 . . . 4 𝐹 ∈ V
21shftfval 15094 . . 3 (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
32dmeqd 5890 . 2 (𝐴 ∈ ℂ → dom (𝐹 shift 𝐴) = dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
4 19.42v 1953 . . . . 5 (∃𝑦(𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦(𝑥𝐴)𝐹𝑦))
5 ovex 7443 . . . . . . 7 (𝑥𝐴) ∈ V
65eldm 5885 . . . . . 6 ((𝑥𝐴) ∈ dom 𝐹 ↔ ∃𝑦(𝑥𝐴)𝐹𝑦)
76anbi2i 623 . . . . 5 ((𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ dom 𝐹) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦(𝑥𝐴)𝐹𝑦))
84, 7bitr4i 278 . . . 4 (∃𝑦(𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦) ↔ (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ dom 𝐹))
98abbii 2803 . . 3 {𝑥 ∣ ∃𝑦(𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ dom 𝐹)}
10 dmopab 5900 . . 3 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} = {𝑥 ∣ ∃𝑦(𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}
11 df-rab 3421 . . 3 {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ dom 𝐹} = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ dom 𝐹)}
129, 10, 113eqtr4i 2769 . 2 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} = {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ dom 𝐹}
133, 12eqtrdi 2787 1 (𝐴 ∈ ℂ → dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ dom 𝐹})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2714  {crab 3420  Vcvv 3464   class class class wbr 5124  {copab 5186  dom cdm 5659  (class class class)co 7410  cc 11132  cmin 11471   shift cshi 15090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-ltxr 11279  df-sub 11473  df-shft 15091
This theorem is referenced by:  shftfn  15097
  Copyright terms: Public domain W3C validator