![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > shftdm | Structured version Visualization version GIF version |
Description: Domain of a relation shifted by 𝐴. The set on the right is more commonly notated as (dom 𝐹 + 𝐴) (meaning add 𝐴 to every element of dom 𝐹). (Contributed by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
shftfval.1 | ⊢ 𝐹 ∈ V |
Ref | Expression |
---|---|
shftdm | ⊢ (𝐴 ∈ ℂ → dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ dom 𝐹}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shftfval.1 | . . . 4 ⊢ 𝐹 ∈ V | |
2 | 1 | shftfval 15016 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) |
3 | 2 | dmeqd 5905 | . 2 ⊢ (𝐴 ∈ ℂ → dom (𝐹 shift 𝐴) = dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) |
4 | 19.42v 1957 | . . . . 5 ⊢ (∃𝑦(𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦(𝑥 − 𝐴)𝐹𝑦)) | |
5 | ovex 7441 | . . . . . . 7 ⊢ (𝑥 − 𝐴) ∈ V | |
6 | 5 | eldm 5900 | . . . . . 6 ⊢ ((𝑥 − 𝐴) ∈ dom 𝐹 ↔ ∃𝑦(𝑥 − 𝐴)𝐹𝑦) |
7 | 6 | anbi2i 623 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ dom 𝐹) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦(𝑥 − 𝐴)𝐹𝑦)) |
8 | 4, 7 | bitr4i 277 | . . . 4 ⊢ (∃𝑦(𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦) ↔ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ dom 𝐹)) |
9 | 8 | abbii 2802 | . . 3 ⊢ {𝑥 ∣ ∃𝑦(𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ dom 𝐹)} |
10 | dmopab 5915 | . . 3 ⊢ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} = {𝑥 ∣ ∃𝑦(𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} | |
11 | df-rab 3433 | . . 3 ⊢ {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ dom 𝐹} = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ dom 𝐹)} | |
12 | 9, 10, 11 | 3eqtr4i 2770 | . 2 ⊢ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} = {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ dom 𝐹} |
13 | 3, 12 | eqtrdi 2788 | 1 ⊢ (𝐴 ∈ ℂ → dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ dom 𝐹}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 {cab 2709 {crab 3432 Vcvv 3474 class class class wbr 5148 {copab 5210 dom cdm 5676 (class class class)co 7408 ℂcc 11107 − cmin 11443 shift cshi 15012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-ltxr 11252 df-sub 11445 df-shft 15013 |
This theorem is referenced by: shftfn 15019 |
Copyright terms: Public domain | W3C validator |