Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldmxrncnvepres2 Structured version   Visualization version   GIF version

Theorem eldmxrncnvepres2 38402
Description: Element of the domain of the range product with restricted converse epsilon relation. This identifies the domain of the pet 38848 span (𝑅 ⋉ (' E | 𝐴)): a 𝐵 belongs to the domain of the span exactly when 𝐵 is in 𝐴 and has at least one 𝑥𝐵 and 𝑦 with 𝐵𝑅𝑦. (Contributed by Peter Mazsa, 23-Nov-2025.)
Assertion
Ref Expression
eldmxrncnvepres2 (𝐵𝑉 → (𝐵 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ↔ (𝐵𝐴 ∧ ∃𝑥 𝑥𝐵 ∧ ∃𝑦 𝐵𝑅𝑦)))
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑦,𝐵   𝑦,𝑅
Allowed substitution hints:   𝐴(𝑥)   𝑅(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem eldmxrncnvepres2
StepHypRef Expression
1 eldmres 38264 . . 3 (𝐵𝑉 → (𝐵 ∈ dom (𝑅𝐴) ↔ (𝐵𝐴 ∧ ∃𝑦 𝐵𝑅𝑦)))
2 n0 4306 . . . 4 (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥𝐵)
32a1i 11 . . 3 (𝐵𝑉 → (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥𝐵))
41, 3anbi12d 632 . 2 (𝐵𝑉 → ((𝐵 ∈ dom (𝑅𝐴) ∧ 𝐵 ≠ ∅) ↔ ((𝐵𝐴 ∧ ∃𝑦 𝐵𝑅𝑦) ∧ ∃𝑥 𝑥𝐵)))
5 dmxrncnvepres 38400 . . . 4 dom (𝑅 ⋉ ( E ↾ 𝐴)) = (dom (𝑅𝐴) ∖ {∅})
65eleq2i 2820 . . 3 (𝐵 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ↔ 𝐵 ∈ (dom (𝑅𝐴) ∖ {∅}))
7 eldifsn 4740 . . 3 (𝐵 ∈ (dom (𝑅𝐴) ∖ {∅}) ↔ (𝐵 ∈ dom (𝑅𝐴) ∧ 𝐵 ≠ ∅))
86, 7bitri 275 . 2 (𝐵 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ↔ (𝐵 ∈ dom (𝑅𝐴) ∧ 𝐵 ≠ ∅))
9 3anan32 1096 . 2 ((𝐵𝐴 ∧ ∃𝑥 𝑥𝐵 ∧ ∃𝑦 𝐵𝑅𝑦) ↔ ((𝐵𝐴 ∧ ∃𝑦 𝐵𝑅𝑦) ∧ ∃𝑥 𝑥𝐵))
104, 8, 93bitr4g 314 1 (𝐵𝑉 → (𝐵 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ↔ (𝐵𝐴 ∧ ∃𝑥 𝑥𝐵 ∧ ∃𝑦 𝐵𝑅𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wex 1779  wcel 2109  wne 2925  cdif 3902  c0 4286  {csn 4579   class class class wbr 5095   E cep 5522  ccnv 5622  dom cdm 5623  cres 5625  cxrn 38173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-eprel 5523  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494  df-oprab 7357  df-1st 7931  df-2nd 7932  df-xrn 38358
This theorem is referenced by:  eceldmqsxrncnvepres2  38404  dmqsblocks  38850
  Copyright terms: Public domain W3C validator