| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eldmxrncnvepres2 | Structured version Visualization version GIF version | ||
| Description: Element of the domain of the range product with restricted converse epsilon relation. This identifies the domain of the pet 38848 span (𝑅 ⋉ (' E | 𝐴)): a 𝐵 belongs to the domain of the span exactly when 𝐵 is in 𝐴 and has at least one 𝑥 ∈ 𝐵 and 𝑦 with 𝐵𝑅𝑦. (Contributed by Peter Mazsa, 23-Nov-2025.) |
| Ref | Expression |
|---|---|
| eldmxrncnvepres2 | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) ↔ (𝐵 ∈ 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝐵 ∧ ∃𝑦 𝐵𝑅𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldmres 38264 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ ∃𝑦 𝐵𝑅𝑦))) | |
| 2 | n0 4306 | . . . 4 ⊢ (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐵) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐵)) |
| 4 | 1, 3 | anbi12d 632 | . 2 ⊢ (𝐵 ∈ 𝑉 → ((𝐵 ∈ dom (𝑅 ↾ 𝐴) ∧ 𝐵 ≠ ∅) ↔ ((𝐵 ∈ 𝐴 ∧ ∃𝑦 𝐵𝑅𝑦) ∧ ∃𝑥 𝑥 ∈ 𝐵))) |
| 5 | dmxrncnvepres 38400 | . . . 4 ⊢ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) = (dom (𝑅 ↾ 𝐴) ∖ {∅}) | |
| 6 | 5 | eleq2i 2820 | . . 3 ⊢ (𝐵 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) ↔ 𝐵 ∈ (dom (𝑅 ↾ 𝐴) ∖ {∅})) |
| 7 | eldifsn 4740 | . . 3 ⊢ (𝐵 ∈ (dom (𝑅 ↾ 𝐴) ∖ {∅}) ↔ (𝐵 ∈ dom (𝑅 ↾ 𝐴) ∧ 𝐵 ≠ ∅)) | |
| 8 | 6, 7 | bitri 275 | . 2 ⊢ (𝐵 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) ↔ (𝐵 ∈ dom (𝑅 ↾ 𝐴) ∧ 𝐵 ≠ ∅)) |
| 9 | 3anan32 1096 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝐵 ∧ ∃𝑦 𝐵𝑅𝑦) ↔ ((𝐵 ∈ 𝐴 ∧ ∃𝑦 𝐵𝑅𝑦) ∧ ∃𝑥 𝑥 ∈ 𝐵)) | |
| 10 | 4, 8, 9 | 3bitr4g 314 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) ↔ (𝐵 ∈ 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝐵 ∧ ∃𝑦 𝐵𝑅𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3902 ∅c0 4286 {csn 4579 class class class wbr 5095 E cep 5522 ◡ccnv 5622 dom cdm 5623 ↾ cres 5625 ⋉ cxrn 38173 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-eprel 5523 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fo 6492 df-fv 6494 df-oprab 7357 df-1st 7931 df-2nd 7932 df-xrn 38358 |
| This theorem is referenced by: eceldmqsxrncnvepres2 38404 dmqsblocks 38850 |
| Copyright terms: Public domain | W3C validator |