| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eldmxrncnvepres2 | Structured version Visualization version GIF version | ||
| Description: Element of the domain of the range product with restricted converse epsilon relation. This identifies the domain of the pet 38838 span (𝑅 ⋉ (' E | 𝐴)): a 𝐵 belongs to the domain of the span exactly when 𝐵 is in 𝐴 and has at least one 𝑥 ∈ 𝐵 and 𝑦 with 𝐵𝑅𝑦. (Contributed by Peter Mazsa, 23-Nov-2025.) |
| Ref | Expression |
|---|---|
| eldmxrncnvepres2 | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) ↔ (𝐵 ∈ 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝐵 ∧ ∃𝑦 𝐵𝑅𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldmres 38254 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ ∃𝑦 𝐵𝑅𝑦))) | |
| 2 | n0 4318 | . . . 4 ⊢ (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐵) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐵)) |
| 4 | 1, 3 | anbi12d 632 | . 2 ⊢ (𝐵 ∈ 𝑉 → ((𝐵 ∈ dom (𝑅 ↾ 𝐴) ∧ 𝐵 ≠ ∅) ↔ ((𝐵 ∈ 𝐴 ∧ ∃𝑦 𝐵𝑅𝑦) ∧ ∃𝑥 𝑥 ∈ 𝐵))) |
| 5 | dmxrncnvepres 38390 | . . . 4 ⊢ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) = (dom (𝑅 ↾ 𝐴) ∖ {∅}) | |
| 6 | 5 | eleq2i 2821 | . . 3 ⊢ (𝐵 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) ↔ 𝐵 ∈ (dom (𝑅 ↾ 𝐴) ∖ {∅})) |
| 7 | eldifsn 4752 | . . 3 ⊢ (𝐵 ∈ (dom (𝑅 ↾ 𝐴) ∖ {∅}) ↔ (𝐵 ∈ dom (𝑅 ↾ 𝐴) ∧ 𝐵 ≠ ∅)) | |
| 8 | 6, 7 | bitri 275 | . 2 ⊢ (𝐵 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) ↔ (𝐵 ∈ dom (𝑅 ↾ 𝐴) ∧ 𝐵 ≠ ∅)) |
| 9 | 3anan32 1096 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝐵 ∧ ∃𝑦 𝐵𝑅𝑦) ↔ ((𝐵 ∈ 𝐴 ∧ ∃𝑦 𝐵𝑅𝑦) ∧ ∃𝑥 𝑥 ∈ 𝐵)) | |
| 10 | 4, 8, 9 | 3bitr4g 314 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) ↔ (𝐵 ∈ 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝐵 ∧ ∃𝑦 𝐵𝑅𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∃wex 1779 ∈ wcel 2109 ≠ wne 2926 ∖ cdif 3913 ∅c0 4298 {csn 4591 class class class wbr 5109 E cep 5539 ◡ccnv 5639 dom cdm 5640 ↾ cres 5642 ⋉ cxrn 38163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-eprel 5540 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fo 6519 df-fv 6521 df-oprab 7393 df-1st 7970 df-2nd 7971 df-xrn 38348 |
| This theorem is referenced by: eceldmqsxrncnvepres2 38394 dmqsblocks 38840 |
| Copyright terms: Public domain | W3C validator |