| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eldmxrncnvepres2 | Structured version Visualization version GIF version | ||
| Description: Element of the domain of the range product with restricted converse epsilon relation. This identifies the domain of the pet 38889 span (𝑅 ⋉ (' E | 𝐴)): a 𝐵 belongs to the domain of the span exactly when 𝐵 is in 𝐴 and has at least one 𝑥 ∈ 𝐵 and 𝑦 with 𝐵𝑅𝑦. (Contributed by Peter Mazsa, 23-Nov-2025.) |
| Ref | Expression |
|---|---|
| eldmxrncnvepres2 | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) ↔ (𝐵 ∈ 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝐵 ∧ ∃𝑦 𝐵𝑅𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldmres 38305 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ ∃𝑦 𝐵𝑅𝑦))) | |
| 2 | n0 4298 | . . . 4 ⊢ (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐵) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐵)) |
| 4 | 1, 3 | anbi12d 632 | . 2 ⊢ (𝐵 ∈ 𝑉 → ((𝐵 ∈ dom (𝑅 ↾ 𝐴) ∧ 𝐵 ≠ ∅) ↔ ((𝐵 ∈ 𝐴 ∧ ∃𝑦 𝐵𝑅𝑦) ∧ ∃𝑥 𝑥 ∈ 𝐵))) |
| 5 | dmxrncnvepres 38441 | . . . 4 ⊢ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) = (dom (𝑅 ↾ 𝐴) ∖ {∅}) | |
| 6 | 5 | eleq2i 2823 | . . 3 ⊢ (𝐵 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) ↔ 𝐵 ∈ (dom (𝑅 ↾ 𝐴) ∖ {∅})) |
| 7 | eldifsn 4733 | . . 3 ⊢ (𝐵 ∈ (dom (𝑅 ↾ 𝐴) ∖ {∅}) ↔ (𝐵 ∈ dom (𝑅 ↾ 𝐴) ∧ 𝐵 ≠ ∅)) | |
| 8 | 6, 7 | bitri 275 | . 2 ⊢ (𝐵 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) ↔ (𝐵 ∈ dom (𝑅 ↾ 𝐴) ∧ 𝐵 ≠ ∅)) |
| 9 | 3anan32 1096 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝐵 ∧ ∃𝑦 𝐵𝑅𝑦) ↔ ((𝐵 ∈ 𝐴 ∧ ∃𝑦 𝐵𝑅𝑦) ∧ ∃𝑥 𝑥 ∈ 𝐵)) | |
| 10 | 4, 8, 9 | 3bitr4g 314 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) ↔ (𝐵 ∈ 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝐵 ∧ ∃𝑦 𝐵𝑅𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3894 ∅c0 4278 {csn 4571 class class class wbr 5086 E cep 5510 ◡ccnv 5610 dom cdm 5611 ↾ cres 5613 ⋉ cxrn 38214 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-eprel 5511 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fo 6482 df-fv 6484 df-oprab 7345 df-1st 7916 df-2nd 7917 df-xrn 38399 |
| This theorem is referenced by: eceldmqsxrncnvepres2 38445 dmqsblocks 38891 |
| Copyright terms: Public domain | W3C validator |