Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldmxrncnvepres2 Structured version   Visualization version   GIF version

Theorem eldmxrncnvepres2 38532
Description: Element of the domain of the range product with restricted converse epsilon relation. This identifies the domain of the pet 39022 span (𝑅 ⋉ ( E ↾ 𝐴)): a 𝐵 belongs to the domain of the span exactly when 𝐵 is in 𝐴 and has at least one 𝑥𝐵 and 𝑦 with 𝐵𝑅𝑦. (Contributed by Peter Mazsa, 23-Nov-2025.)
Assertion
Ref Expression
eldmxrncnvepres2 (𝐵𝑉 → (𝐵 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ↔ (𝐵𝐴 ∧ ∃𝑥 𝑥𝐵 ∧ ∃𝑦 𝐵𝑅𝑦)))
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑦,𝐵   𝑦,𝑅
Allowed substitution hints:   𝐴(𝑥)   𝑅(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem eldmxrncnvepres2
StepHypRef Expression
1 eldmres 38382 . . 3 (𝐵𝑉 → (𝐵 ∈ dom (𝑅𝐴) ↔ (𝐵𝐴 ∧ ∃𝑦 𝐵𝑅𝑦)))
2 n0 4302 . . . 4 (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥𝐵)
32a1i 11 . . 3 (𝐵𝑉 → (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥𝐵))
41, 3anbi12d 632 . 2 (𝐵𝑉 → ((𝐵 ∈ dom (𝑅𝐴) ∧ 𝐵 ≠ ∅) ↔ ((𝐵𝐴 ∧ ∃𝑦 𝐵𝑅𝑦) ∧ ∃𝑥 𝑥𝐵)))
5 dmxrncnvepres 38529 . . . 4 dom (𝑅 ⋉ ( E ↾ 𝐴)) = (dom (𝑅𝐴) ∖ {∅})
65eleq2i 2825 . . 3 (𝐵 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ↔ 𝐵 ∈ (dom (𝑅𝐴) ∖ {∅}))
7 eldifsn 4739 . . 3 (𝐵 ∈ (dom (𝑅𝐴) ∖ {∅}) ↔ (𝐵 ∈ dom (𝑅𝐴) ∧ 𝐵 ≠ ∅))
86, 7bitri 275 . 2 (𝐵 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ↔ (𝐵 ∈ dom (𝑅𝐴) ∧ 𝐵 ≠ ∅))
9 3anan32 1096 . 2 ((𝐵𝐴 ∧ ∃𝑥 𝑥𝐵 ∧ ∃𝑦 𝐵𝑅𝑦) ↔ ((𝐵𝐴 ∧ ∃𝑦 𝐵𝑅𝑦) ∧ ∃𝑥 𝑥𝐵))
104, 8, 93bitr4g 314 1 (𝐵𝑉 → (𝐵 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ↔ (𝐵𝐴 ∧ ∃𝑥 𝑥𝐵 ∧ ∃𝑦 𝐵𝑅𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wex 1780  wcel 2113  wne 2929  cdif 3895  c0 4282  {csn 4577   class class class wbr 5095   E cep 5520  ccnv 5620  dom cdm 5621  cres 5623  cxrn 38287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-eprel 5521  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fo 6495  df-fv 6497  df-oprab 7359  df-1st 7930  df-2nd 7931  df-xrn 38477
This theorem is referenced by:  eceldmqsxrncnvepres2  38534  dmqsblocks  39024
  Copyright terms: Public domain W3C validator