| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dya2iocrfn | Structured version Visualization version GIF version | ||
| Description: The function returning dyadic square covering for a given size has domain (ran 𝐼 × ran 𝐼). (Contributed by Thierry Arnoux, 19-Sep-2017.) |
| Ref | Expression |
|---|---|
| sxbrsiga.0 | ⊢ 𝐽 = (topGen‘ran (,)) |
| dya2ioc.1 | ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
| dya2ioc.2 | ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) |
| Ref | Expression |
|---|---|
| dya2iocrfn | ⊢ 𝑅 Fn (ran 𝐼 × ran 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dya2ioc.2 | . 2 ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) | |
| 2 | vex 3442 | . . 3 ⊢ 𝑢 ∈ V | |
| 3 | vex 3442 | . . 3 ⊢ 𝑣 ∈ V | |
| 4 | 2, 3 | xpex 7693 | . 2 ⊢ (𝑢 × 𝑣) ∈ V |
| 5 | 1, 4 | fnmpoi 8012 | 1 ⊢ 𝑅 Fn (ran 𝐼 × ran 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 × cxp 5621 ran crn 5624 Fn wfn 6481 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 1c1 11029 + caddc 11031 / cdiv 11795 2c2 12201 ℤcz 12489 (,)cioo 13266 [,)cico 13268 ↑cexp 13986 topGenctg 17359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 |
| This theorem is referenced by: dya2iocuni 34250 |
| Copyright terms: Public domain | W3C validator |