Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2iocrfn Structured version   Visualization version   GIF version

Theorem dya2iocrfn 34313
Description: The function returning dyadic square covering for a given size has domain (ran 𝐼 × ran 𝐼). (Contributed by Thierry Arnoux, 19-Sep-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
dya2ioc.2 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
Assertion
Ref Expression
dya2iocrfn 𝑅 Fn (ran 𝐼 × ran 𝐼)
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝑣,𝑢,𝐼
Allowed substitution hints:   𝑅(𝑥,𝑣,𝑢,𝑛)   𝐼(𝑛)   𝐽(𝑥,𝑣,𝑢,𝑛)

Proof of Theorem dya2iocrfn
StepHypRef Expression
1 dya2ioc.2 . 2 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
2 vex 3441 . . 3 𝑢 ∈ V
3 vex 3441 . . 3 𝑣 ∈ V
42, 3xpex 7692 . 2 (𝑢 × 𝑣) ∈ V
51, 4fnmpoi 8008 1 𝑅 Fn (ran 𝐼 × ran 𝐼)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541   × cxp 5617  ran crn 5620   Fn wfn 6481  cfv 6486  (class class class)co 7352  cmpo 7354  1c1 11014   + caddc 11016   / cdiv 11781  2c2 12187  cz 12475  (,)cioo 13247  [,)cico 13249  cexp 13970  topGenctg 17343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928
This theorem is referenced by:  dya2iocuni  34317
  Copyright terms: Public domain W3C validator