![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dya2iocrfn | Structured version Visualization version GIF version |
Description: The function returning dyadic square covering for a given size has domain (ran 𝐼 × ran 𝐼). (Contributed by Thierry Arnoux, 19-Sep-2017.) |
Ref | Expression |
---|---|
sxbrsiga.0 | ⊢ 𝐽 = (topGen‘ran (,)) |
dya2ioc.1 | ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
dya2ioc.2 | ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) |
Ref | Expression |
---|---|
dya2iocrfn | ⊢ 𝑅 Fn (ran 𝐼 × ran 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dya2ioc.2 | . 2 ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) | |
2 | vex 3492 | . . 3 ⊢ 𝑢 ∈ V | |
3 | vex 3492 | . . 3 ⊢ 𝑣 ∈ V | |
4 | 2, 3 | xpex 7788 | . 2 ⊢ (𝑢 × 𝑣) ∈ V |
5 | 1, 4 | fnmpoi 8111 | 1 ⊢ 𝑅 Fn (ran 𝐼 × ran 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 × cxp 5698 ran crn 5701 Fn wfn 6568 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 1c1 11185 + caddc 11187 / cdiv 11947 2c2 12348 ℤcz 12639 (,)cioo 13407 [,)cico 13409 ↑cexp 14112 topGenctg 17497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 |
This theorem is referenced by: dya2iocuni 34248 |
Copyright terms: Public domain | W3C validator |