| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dya2iocrfn | Structured version Visualization version GIF version | ||
| Description: The function returning dyadic square covering for a given size has domain (ran 𝐼 × ran 𝐼). (Contributed by Thierry Arnoux, 19-Sep-2017.) |
| Ref | Expression |
|---|---|
| sxbrsiga.0 | ⊢ 𝐽 = (topGen‘ran (,)) |
| dya2ioc.1 | ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
| dya2ioc.2 | ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) |
| Ref | Expression |
|---|---|
| dya2iocrfn | ⊢ 𝑅 Fn (ran 𝐼 × ran 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dya2ioc.2 | . 2 ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) | |
| 2 | vex 3463 | . . 3 ⊢ 𝑢 ∈ V | |
| 3 | vex 3463 | . . 3 ⊢ 𝑣 ∈ V | |
| 4 | 2, 3 | xpex 7747 | . 2 ⊢ (𝑢 × 𝑣) ∈ V |
| 5 | 1, 4 | fnmpoi 8069 | 1 ⊢ 𝑅 Fn (ran 𝐼 × ran 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 × cxp 5652 ran crn 5655 Fn wfn 6526 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 1c1 11130 + caddc 11132 / cdiv 11894 2c2 12295 ℤcz 12588 (,)cioo 13362 [,)cico 13364 ↑cexp 14079 topGenctg 17451 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 |
| This theorem is referenced by: dya2iocuni 34315 |
| Copyright terms: Public domain | W3C validator |