| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dya2iocrfn | Structured version Visualization version GIF version | ||
| Description: The function returning dyadic square covering for a given size has domain (ran 𝐼 × ran 𝐼). (Contributed by Thierry Arnoux, 19-Sep-2017.) |
| Ref | Expression |
|---|---|
| sxbrsiga.0 | ⊢ 𝐽 = (topGen‘ran (,)) |
| dya2ioc.1 | ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
| dya2ioc.2 | ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) |
| Ref | Expression |
|---|---|
| dya2iocrfn | ⊢ 𝑅 Fn (ran 𝐼 × ran 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dya2ioc.2 | . 2 ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) | |
| 2 | vex 3441 | . . 3 ⊢ 𝑢 ∈ V | |
| 3 | vex 3441 | . . 3 ⊢ 𝑣 ∈ V | |
| 4 | 2, 3 | xpex 7692 | . 2 ⊢ (𝑢 × 𝑣) ∈ V |
| 5 | 1, 4 | fnmpoi 8008 | 1 ⊢ 𝑅 Fn (ran 𝐼 × ran 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 × cxp 5617 ran crn 5620 Fn wfn 6481 ‘cfv 6486 (class class class)co 7352 ∈ cmpo 7354 1c1 11014 + caddc 11016 / cdiv 11781 2c2 12187 ℤcz 12475 (,)cioo 13247 [,)cico 13249 ↑cexp 13970 topGenctg 17343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 |
| This theorem is referenced by: dya2iocuni 34317 |
| Copyright terms: Public domain | W3C validator |