| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dya2iocrfn | Structured version Visualization version GIF version | ||
| Description: The function returning dyadic square covering for a given size has domain (ran 𝐼 × ran 𝐼). (Contributed by Thierry Arnoux, 19-Sep-2017.) |
| Ref | Expression |
|---|---|
| sxbrsiga.0 | ⊢ 𝐽 = (topGen‘ran (,)) |
| dya2ioc.1 | ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
| dya2ioc.2 | ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) |
| Ref | Expression |
|---|---|
| dya2iocrfn | ⊢ 𝑅 Fn (ran 𝐼 × ran 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dya2ioc.2 | . 2 ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) | |
| 2 | vex 3454 | . . 3 ⊢ 𝑢 ∈ V | |
| 3 | vex 3454 | . . 3 ⊢ 𝑣 ∈ V | |
| 4 | 2, 3 | xpex 7732 | . 2 ⊢ (𝑢 × 𝑣) ∈ V |
| 5 | 1, 4 | fnmpoi 8052 | 1 ⊢ 𝑅 Fn (ran 𝐼 × ran 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 × cxp 5639 ran crn 5642 Fn wfn 6509 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 1c1 11076 + caddc 11078 / cdiv 11842 2c2 12248 ℤcz 12536 (,)cioo 13313 [,)cico 13315 ↑cexp 14033 topGenctg 17407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 |
| This theorem is referenced by: dya2iocuni 34281 |
| Copyright terms: Public domain | W3C validator |