| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dya2iocct | Structured version Visualization version GIF version | ||
| Description: The dyadic rectangle set is countable. (Contributed by Thierry Arnoux, 18-Sep-2017.) (Revised by Thierry Arnoux, 11-Oct-2017.) |
| Ref | Expression |
|---|---|
| sxbrsiga.0 | ⊢ 𝐽 = (topGen‘ran (,)) |
| dya2ioc.1 | ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
| dya2ioc.2 | ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) |
| Ref | Expression |
|---|---|
| dya2iocct | ⊢ ran 𝑅 ≼ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dya2ioc.1 | . . . 4 ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) | |
| 2 | znnen 16187 | . . . . . 6 ⊢ ℤ ≈ ℕ | |
| 3 | nnct 13953 | . . . . . 6 ⊢ ℕ ≼ ω | |
| 4 | endomtr 8986 | . . . . . 6 ⊢ ((ℤ ≈ ℕ ∧ ℕ ≼ ω) → ℤ ≼ ω) | |
| 5 | 2, 3, 4 | mp2an 692 | . . . . 5 ⊢ ℤ ≼ ω |
| 6 | ovex 7423 | . . . . . . 7 ⊢ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ V | |
| 7 | 6 | rgen2w 3050 | . . . . . 6 ⊢ ∀𝑥 ∈ ℤ ∀𝑛 ∈ ℤ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ V |
| 8 | 7 | mpocti 32646 | . . . . 5 ⊢ ((ℤ ≼ ω ∧ ℤ ≼ ω) → (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ≼ ω) |
| 9 | 5, 5, 8 | mp2an 692 | . . . 4 ⊢ (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ≼ ω |
| 10 | 1, 9 | eqbrtri 5131 | . . 3 ⊢ 𝐼 ≼ ω |
| 11 | rnct 10485 | . . 3 ⊢ (𝐼 ≼ ω → ran 𝐼 ≼ ω) | |
| 12 | 10, 11 | ax-mp 5 | . 2 ⊢ ran 𝐼 ≼ ω |
| 13 | vex 3454 | . . . . . 6 ⊢ 𝑢 ∈ V | |
| 14 | vex 3454 | . . . . . 6 ⊢ 𝑣 ∈ V | |
| 15 | 13, 14 | xpex 7732 | . . . . 5 ⊢ (𝑢 × 𝑣) ∈ V |
| 16 | 15 | rgen2w 3050 | . . . 4 ⊢ ∀𝑢 ∈ ran 𝐼∀𝑣 ∈ ran 𝐼(𝑢 × 𝑣) ∈ V |
| 17 | 16 | mpocti 32646 | . . 3 ⊢ ((ran 𝐼 ≼ ω ∧ ran 𝐼 ≼ ω) → (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ≼ ω) |
| 18 | dya2ioc.2 | . . . . 5 ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) | |
| 19 | 18 | breq1i 5117 | . . . 4 ⊢ (𝑅 ≼ ω ↔ (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ≼ ω) |
| 20 | 19 | biimpri 228 | . . 3 ⊢ ((𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ≼ ω → 𝑅 ≼ ω) |
| 21 | rnct 10485 | . . 3 ⊢ (𝑅 ≼ ω → ran 𝑅 ≼ ω) | |
| 22 | 17, 20, 21 | 3syl 18 | . 2 ⊢ ((ran 𝐼 ≼ ω ∧ ran 𝐼 ≼ ω) → ran 𝑅 ≼ ω) |
| 23 | 12, 12, 22 | mp2an 692 | 1 ⊢ ran 𝑅 ≼ ω |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 × cxp 5639 ran crn 5642 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 ωcom 7845 ≈ cen 8918 ≼ cdom 8919 1c1 11076 + caddc 11078 / cdiv 11842 ℕcn 12193 2c2 12248 ℤcz 12536 (,)cioo 13313 [,)cico 13315 ↑cexp 14033 topGenctg 17407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-ac2 10423 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-omul 8442 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-oi 9470 df-card 9899 df-acn 9902 df-ac 10076 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 |
| This theorem is referenced by: sxbrsigalem1 34283 |
| Copyright terms: Public domain | W3C validator |