Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dya2iocct | Structured version Visualization version GIF version |
Description: The dyadic rectangle set is countable. (Contributed by Thierry Arnoux, 18-Sep-2017.) (Revised by Thierry Arnoux, 11-Oct-2017.) |
Ref | Expression |
---|---|
sxbrsiga.0 | ⊢ 𝐽 = (topGen‘ran (,)) |
dya2ioc.1 | ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
dya2ioc.2 | ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) |
Ref | Expression |
---|---|
dya2iocct | ⊢ ran 𝑅 ≼ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dya2ioc.1 | . . . 4 ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) | |
2 | znnen 16021 | . . . . . 6 ⊢ ℤ ≈ ℕ | |
3 | nnct 13807 | . . . . . 6 ⊢ ℕ ≼ ω | |
4 | endomtr 8878 | . . . . . 6 ⊢ ((ℤ ≈ ℕ ∧ ℕ ≼ ω) → ℤ ≼ ω) | |
5 | 2, 3, 4 | mp2an 690 | . . . . 5 ⊢ ℤ ≼ ω |
6 | ovex 7375 | . . . . . . 7 ⊢ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ V | |
7 | 6 | rgen2w 3067 | . . . . . 6 ⊢ ∀𝑥 ∈ ℤ ∀𝑛 ∈ ℤ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ V |
8 | 7 | mpocti 31335 | . . . . 5 ⊢ ((ℤ ≼ ω ∧ ℤ ≼ ω) → (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ≼ ω) |
9 | 5, 5, 8 | mp2an 690 | . . . 4 ⊢ (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ≼ ω |
10 | 1, 9 | eqbrtri 5118 | . . 3 ⊢ 𝐼 ≼ ω |
11 | rnct 10387 | . . 3 ⊢ (𝐼 ≼ ω → ran 𝐼 ≼ ω) | |
12 | 10, 11 | ax-mp 5 | . 2 ⊢ ran 𝐼 ≼ ω |
13 | vex 3446 | . . . . . 6 ⊢ 𝑢 ∈ V | |
14 | vex 3446 | . . . . . 6 ⊢ 𝑣 ∈ V | |
15 | 13, 14 | xpex 7670 | . . . . 5 ⊢ (𝑢 × 𝑣) ∈ V |
16 | 15 | rgen2w 3067 | . . . 4 ⊢ ∀𝑢 ∈ ran 𝐼∀𝑣 ∈ ran 𝐼(𝑢 × 𝑣) ∈ V |
17 | 16 | mpocti 31335 | . . 3 ⊢ ((ran 𝐼 ≼ ω ∧ ran 𝐼 ≼ ω) → (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ≼ ω) |
18 | dya2ioc.2 | . . . . 5 ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) | |
19 | 18 | breq1i 5104 | . . . 4 ⊢ (𝑅 ≼ ω ↔ (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ≼ ω) |
20 | 19 | biimpri 227 | . . 3 ⊢ ((𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ≼ ω → 𝑅 ≼ ω) |
21 | rnct 10387 | . . 3 ⊢ (𝑅 ≼ ω → ran 𝑅 ≼ ω) | |
22 | 17, 20, 21 | 3syl 18 | . 2 ⊢ ((ran 𝐼 ≼ ω ∧ ran 𝐼 ≼ ω) → ran 𝑅 ≼ ω) |
23 | 12, 12, 22 | mp2an 690 | 1 ⊢ ran 𝑅 ≼ ω |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1541 ∈ wcel 2106 Vcvv 3442 class class class wbr 5097 × cxp 5623 ran crn 5626 ‘cfv 6484 (class class class)co 7342 ∈ cmpo 7344 ωcom 7785 ≈ cen 8806 ≼ cdom 8807 1c1 10978 + caddc 10980 / cdiv 11738 ℕcn 12079 2c2 12134 ℤcz 12425 (,)cioo 13185 [,)cico 13187 ↑cexp 13888 topGenctg 17246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-inf2 9503 ax-ac2 10325 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-int 4900 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-se 5581 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-isom 6493 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-1st 7904 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-oadd 8376 df-omul 8377 df-er 8574 df-map 8693 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-oi 9372 df-card 9801 df-acn 9804 df-ac 9978 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-nn 12080 df-n0 12340 df-z 12426 df-uz 12689 |
This theorem is referenced by: sxbrsigalem1 32550 |
Copyright terms: Public domain | W3C validator |