Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dya2iocct | Structured version Visualization version GIF version |
Description: The dyadic rectangle set is countable. (Contributed by Thierry Arnoux, 18-Sep-2017.) (Revised by Thierry Arnoux, 11-Oct-2017.) |
Ref | Expression |
---|---|
sxbrsiga.0 | ⊢ 𝐽 = (topGen‘ran (,)) |
dya2ioc.1 | ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
dya2ioc.2 | ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) |
Ref | Expression |
---|---|
dya2iocct | ⊢ ran 𝑅 ≼ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dya2ioc.1 | . . . 4 ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) | |
2 | znnen 15849 | . . . . . 6 ⊢ ℤ ≈ ℕ | |
3 | nnct 13629 | . . . . . 6 ⊢ ℕ ≼ ω | |
4 | endomtr 8753 | . . . . . 6 ⊢ ((ℤ ≈ ℕ ∧ ℕ ≼ ω) → ℤ ≼ ω) | |
5 | 2, 3, 4 | mp2an 688 | . . . . 5 ⊢ ℤ ≼ ω |
6 | ovex 7288 | . . . . . . 7 ⊢ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ V | |
7 | 6 | rgen2w 3076 | . . . . . 6 ⊢ ∀𝑥 ∈ ℤ ∀𝑛 ∈ ℤ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ V |
8 | 7 | mpocti 30952 | . . . . 5 ⊢ ((ℤ ≼ ω ∧ ℤ ≼ ω) → (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ≼ ω) |
9 | 5, 5, 8 | mp2an 688 | . . . 4 ⊢ (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ≼ ω |
10 | 1, 9 | eqbrtri 5091 | . . 3 ⊢ 𝐼 ≼ ω |
11 | rnct 10212 | . . 3 ⊢ (𝐼 ≼ ω → ran 𝐼 ≼ ω) | |
12 | 10, 11 | ax-mp 5 | . 2 ⊢ ran 𝐼 ≼ ω |
13 | vex 3426 | . . . . . 6 ⊢ 𝑢 ∈ V | |
14 | vex 3426 | . . . . . 6 ⊢ 𝑣 ∈ V | |
15 | 13, 14 | xpex 7581 | . . . . 5 ⊢ (𝑢 × 𝑣) ∈ V |
16 | 15 | rgen2w 3076 | . . . 4 ⊢ ∀𝑢 ∈ ran 𝐼∀𝑣 ∈ ran 𝐼(𝑢 × 𝑣) ∈ V |
17 | 16 | mpocti 30952 | . . 3 ⊢ ((ran 𝐼 ≼ ω ∧ ran 𝐼 ≼ ω) → (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ≼ ω) |
18 | dya2ioc.2 | . . . . 5 ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) | |
19 | 18 | breq1i 5077 | . . . 4 ⊢ (𝑅 ≼ ω ↔ (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ≼ ω) |
20 | 19 | biimpri 227 | . . 3 ⊢ ((𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ≼ ω → 𝑅 ≼ ω) |
21 | rnct 10212 | . . 3 ⊢ (𝑅 ≼ ω → ran 𝑅 ≼ ω) | |
22 | 17, 20, 21 | 3syl 18 | . 2 ⊢ ((ran 𝐼 ≼ ω ∧ ran 𝐼 ≼ ω) → ran 𝑅 ≼ ω) |
23 | 12, 12, 22 | mp2an 688 | 1 ⊢ ran 𝑅 ≼ ω |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 × cxp 5578 ran crn 5581 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 ωcom 7687 ≈ cen 8688 ≼ cdom 8689 1c1 10803 + caddc 10805 / cdiv 11562 ℕcn 11903 2c2 11958 ℤcz 12249 (,)cioo 13008 [,)cico 13010 ↑cexp 13710 topGenctg 17065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-ac2 10150 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-omul 8272 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-oi 9199 df-card 9628 df-acn 9631 df-ac 9803 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 |
This theorem is referenced by: sxbrsigalem1 32152 |
Copyright terms: Public domain | W3C validator |