Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2iocct Structured version   Visualization version   GIF version

Theorem dya2iocct 34261
Description: The dyadic rectangle set is countable. (Contributed by Thierry Arnoux, 18-Sep-2017.) (Revised by Thierry Arnoux, 11-Oct-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
dya2ioc.2 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
Assertion
Ref Expression
dya2iocct ran 𝑅 ≼ ω
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝑣,𝑢,𝐼
Allowed substitution hints:   𝑅(𝑥,𝑣,𝑢,𝑛)   𝐼(𝑛)   𝐽(𝑥,𝑣,𝑢,𝑛)

Proof of Theorem dya2iocct
StepHypRef Expression
1 dya2ioc.1 . . . 4 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
2 znnen 16244 . . . . . 6 ℤ ≈ ℕ
3 nnct 14018 . . . . . 6 ℕ ≼ ω
4 endomtr 9050 . . . . . 6 ((ℤ ≈ ℕ ∧ ℕ ≼ ω) → ℤ ≼ ω)
52, 3, 4mp2an 692 . . . . 5 ℤ ≼ ω
6 ovex 7463 . . . . . . 7 ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ V
76rgen2w 3063 . . . . . 6 𝑥 ∈ ℤ ∀𝑛 ∈ ℤ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ V
87mpocti 32732 . . . . 5 ((ℤ ≼ ω ∧ ℤ ≼ ω) → (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ≼ ω)
95, 5, 8mp2an 692 . . . 4 (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ≼ ω
101, 9eqbrtri 5168 . . 3 𝐼 ≼ ω
11 rnct 10562 . . 3 (𝐼 ≼ ω → ran 𝐼 ≼ ω)
1210, 11ax-mp 5 . 2 ran 𝐼 ≼ ω
13 vex 3481 . . . . . 6 𝑢 ∈ V
14 vex 3481 . . . . . 6 𝑣 ∈ V
1513, 14xpex 7771 . . . . 5 (𝑢 × 𝑣) ∈ V
1615rgen2w 3063 . . . 4 𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼(𝑢 × 𝑣) ∈ V
1716mpocti 32732 . . 3 ((ran 𝐼 ≼ ω ∧ ran 𝐼 ≼ ω) → (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ≼ ω)
18 dya2ioc.2 . . . . 5 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
1918breq1i 5154 . . . 4 (𝑅 ≼ ω ↔ (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ≼ ω)
2019biimpri 228 . . 3 ((𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ≼ ω → 𝑅 ≼ ω)
21 rnct 10562 . . 3 (𝑅 ≼ ω → ran 𝑅 ≼ ω)
2217, 20, 213syl 18 . 2 ((ran 𝐼 ≼ ω ∧ ran 𝐼 ≼ ω) → ran 𝑅 ≼ ω)
2312, 12, 22mp2an 692 1 ran 𝑅 ≼ ω
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1536  wcel 2105  Vcvv 3477   class class class wbr 5147   × cxp 5686  ran crn 5689  cfv 6562  (class class class)co 7430  cmpo 7432  ωcom 7886  cen 8980  cdom 8981  1c1 11153   + caddc 11155   / cdiv 11917  cn 12263  2c2 12318  cz 12610  (,)cioo 13383  [,)cico 13385  cexp 14098  topGenctg 17483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-ac2 10500  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-oadd 8508  df-omul 8509  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-oi 9547  df-card 9976  df-acn 9979  df-ac 10153  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876
This theorem is referenced by:  sxbrsigalem1  34266
  Copyright terms: Public domain W3C validator