| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dya2iocct | Structured version Visualization version GIF version | ||
| Description: The dyadic rectangle set is countable. (Contributed by Thierry Arnoux, 18-Sep-2017.) (Revised by Thierry Arnoux, 11-Oct-2017.) |
| Ref | Expression |
|---|---|
| sxbrsiga.0 | ⊢ 𝐽 = (topGen‘ran (,)) |
| dya2ioc.1 | ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
| dya2ioc.2 | ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) |
| Ref | Expression |
|---|---|
| dya2iocct | ⊢ ran 𝑅 ≼ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dya2ioc.1 | . . . 4 ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) | |
| 2 | znnen 16180 | . . . . . 6 ⊢ ℤ ≈ ℕ | |
| 3 | nnct 13946 | . . . . . 6 ⊢ ℕ ≼ ω | |
| 4 | endomtr 8983 | . . . . . 6 ⊢ ((ℤ ≈ ℕ ∧ ℕ ≼ ω) → ℤ ≼ ω) | |
| 5 | 2, 3, 4 | mp2an 692 | . . . . 5 ⊢ ℤ ≼ ω |
| 6 | ovex 7420 | . . . . . . 7 ⊢ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ V | |
| 7 | 6 | rgen2w 3049 | . . . . . 6 ⊢ ∀𝑥 ∈ ℤ ∀𝑛 ∈ ℤ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ V |
| 8 | 7 | mpocti 32639 | . . . . 5 ⊢ ((ℤ ≼ ω ∧ ℤ ≼ ω) → (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ≼ ω) |
| 9 | 5, 5, 8 | mp2an 692 | . . . 4 ⊢ (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ≼ ω |
| 10 | 1, 9 | eqbrtri 5128 | . . 3 ⊢ 𝐼 ≼ ω |
| 11 | rnct 10478 | . . 3 ⊢ (𝐼 ≼ ω → ran 𝐼 ≼ ω) | |
| 12 | 10, 11 | ax-mp 5 | . 2 ⊢ ran 𝐼 ≼ ω |
| 13 | vex 3451 | . . . . . 6 ⊢ 𝑢 ∈ V | |
| 14 | vex 3451 | . . . . . 6 ⊢ 𝑣 ∈ V | |
| 15 | 13, 14 | xpex 7729 | . . . . 5 ⊢ (𝑢 × 𝑣) ∈ V |
| 16 | 15 | rgen2w 3049 | . . . 4 ⊢ ∀𝑢 ∈ ran 𝐼∀𝑣 ∈ ran 𝐼(𝑢 × 𝑣) ∈ V |
| 17 | 16 | mpocti 32639 | . . 3 ⊢ ((ran 𝐼 ≼ ω ∧ ran 𝐼 ≼ ω) → (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ≼ ω) |
| 18 | dya2ioc.2 | . . . . 5 ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) | |
| 19 | 18 | breq1i 5114 | . . . 4 ⊢ (𝑅 ≼ ω ↔ (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ≼ ω) |
| 20 | 19 | biimpri 228 | . . 3 ⊢ ((𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) ≼ ω → 𝑅 ≼ ω) |
| 21 | rnct 10478 | . . 3 ⊢ (𝑅 ≼ ω → ran 𝑅 ≼ ω) | |
| 22 | 17, 20, 21 | 3syl 18 | . 2 ⊢ ((ran 𝐼 ≼ ω ∧ ran 𝐼 ≼ ω) → ran 𝑅 ≼ ω) |
| 23 | 12, 12, 22 | mp2an 692 | 1 ⊢ ran 𝑅 ≼ ω |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 × cxp 5636 ran crn 5639 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 ωcom 7842 ≈ cen 8915 ≼ cdom 8916 1c1 11069 + caddc 11071 / cdiv 11835 ℕcn 12186 2c2 12241 ℤcz 12529 (,)cioo 13306 [,)cico 13308 ↑cexp 14026 topGenctg 17400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-ac2 10416 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-omul 8439 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-oi 9463 df-card 9892 df-acn 9895 df-ac 10069 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 |
| This theorem is referenced by: sxbrsigalem1 34276 |
| Copyright terms: Public domain | W3C validator |